Published on in Vol 5, No 1 (2013):

Flu Near You: An Online Self-reported Influenza Surveillance System in the USA

Flu Near You: An Online Self-reported Influenza Surveillance System in the USA

Flu Near You: An Online Self-reported Influenza Surveillance System in the USA

The full text of this article is available as a PDF download by clicking here.

Journals

  1. Frazier L. More than the Affordable Care Act: Topics and Themes in Health Policy Research. Policy Studies Journal 2016;44(S1) View
  2. Alessa A, Faezipour M. A review of influenza detection and prediction through social networking sites. Theoretical Biology and Medical Modelling 2018;15(1) View
  3. Scarpino S, Scott J, Eggo R, Clements B, Dimitrov N, Meyers L, Ferrari M. Socioeconomic bias in influenza surveillance. PLOS Computational Biology 2020;16(7):e1007941 View
  4. Chunara R, Goldstein E, Patterson-Lomba O, Brownstein J. Estimating influenza attack rates in the United States using a participatory cohort. Scientific Reports 2015;5(1) View
  5. Koehlmoos T, Janvrin M, Korona-Bailey J, Madsen C, Sturdivant R. COVID-19 Self-Reported Symptom Tracking Programs in the United States: Framework Synthesis. Journal of Medical Internet Research 2020;22(10):e23297 View
  6. Lazer D, Kennedy R, King G, Vespignani A. The Parable of Google Flu: Traps in Big Data Analysis. Science 2014;343(6176):1203 View
  7. Smolinski M, Crawley A, Olsen J, Jayaraman T, Libel M. Participatory Disease Surveillance: Engaging Communities Directly in Reporting, Monitoring, and Responding to Health Threats. JMIR Public Health and Surveillance 2017;3(4):e62 View
  8. Miliou I, Xiong X, Rinzivillo S, Zhang Q, Rossetti G, Giannotti F, Pedreschi D, Vespignani A, Viboud C. Predicting seasonal influenza using supermarket retail records. PLOS Computational Biology 2021;17(7):e1009087 View
  9. Rosa R, De Silva M, Silva D, Ayub M, Carrillo D, Nardelli P, Rodriguez D. Event Detection System Based on User Behavior Changes in Online Social Networks: Case of the COVID-19 Pandemic. IEEE Access 2020;8:158806 View
  10. Volkova S, Charles L, Harrison J, Corley C. Uncovering the relationships between military community health and affects expressed in social media. EPJ Data Science 2017;6(1) View
  11. Bouzillé G, Poirier C, Campillo-Gimenez B, Aubert M, Chabot M, Chazard E, Lavenu A, Cuggia M. Leveraging hospital big data to monitor flu epidemics. Computer Methods and Programs in Biomedicine 2018;154:153 View
  12. Alessa A, Faezipour M. Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study. JMIR Public Health and Surveillance 2019;5(2):e12383 View
  13. Aiello A, Renson A, Zivich P. Social Media– and Internet-Based Disease Surveillance for Public Health. Annual Review of Public Health 2020;41(1):101 View
  14. Mataraso S, Socrates V, Lekschas F, Gehlenborg N. Design and Development of Halyos: A Patient-Facing Visual EHR Interface for Longitudinal Risk Awareness. ACI Open 2022;06(02):e123 View
  15. Haque S, Mengersen K, Barr I, Wang L, Yang W, Vardoulakis S, Bambrick H, Hu W. Towards development of functional climate-driven early warning systems for climate-sensitive infectious diseases: Statistical models and recommendations. Environmental Research 2024;249:118568 View
  16. Leal Neto O, Paolotti D, Dalton C, Carlson S, Susumpow P, Parker M, Phetra P, Lau E, Colizza V, Jan van Hoek A, Kjelsø C, Brownstein J, Smolinski M. Enabling Multicentric Participatory Disease Surveillance for Global Health Enhancement: Viewpoint on Global Flu View. JMIR Public Health and Surveillance 2023;9:e46644 View
  17. Varrelman T, Rader B, Remmel C, Tuli G, Han A, Astley C, Brownstein J. Vaccine effectiveness against emerging COVID-19 variants using digital health data. Communications Medicine 2024;4(1) View
  18. Huang D, Wang J, Huang J, Sui D, Zhang H, Hu M, Xu C, Salathé M. Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data. PLOS Computational Biology 2016;12(6):e1004876 View
  19. Kostkova P, Saigí-Rubió F, Eguia H, Borbolla D, Verschuuren M, Hamilton C, Azzopardi-Muscat N, Novillo-Ortiz D. Data and Digital Solutions to Support Surveillance Strategies in the Context of the COVID-19 Pandemic. Frontiers in Digital Health 2021;3 View
  20. Liu D, Mitchell L, Cope R, Carlson S, Ross J. Elucidating user behaviours in a digital health surveillance system to correct prevalence estimates. Epidemics 2020;33:100404 View
  21. Broniatowski D, Dredze M, Paul M, Dugas A. Using Social Media to Perform Local Influenza Surveillance in an Inner-City Hospital: A Retrospective Observational Study. JMIR Public Health and Surveillance 2015;1(1):e5 View
  22. Althouse B, Scarpino S, Meyers L, Ayers J, Bargsten M, Baumbach J, Brownstein J, Castro L, Clapham H, Cummings D, Del Valle S, Eubank S, Fairchild G, Finelli L, Generous N, George D, Harper D, Hébert-Dufresne L, Johansson M, Konty K, Lipsitch M, Milinovich G, Miller J, Nsoesie E, Olson D, Paul M, Polgreen P, Priedhorsky R, Read J, Rodríguez-Barraquer I, Smith D, Stefansen C, Swerdlow D, Thompson D, Vespignani A, Wesolowski A. Enhancing disease surveillance with novel data streams: challenges and opportunities. EPJ Data Science 2015;4(1) View
  23. Baltrusaitis K, Santillana M, Crawley A, Chunara R, Smolinski M, Brownstein J. Determinants of Participants’ Follow-Up and Characterization of Representativeness in Flu Near You, A Participatory Disease Surveillance System. JMIR Public Health and Surveillance 2017;3(2):e18 View
  24. Koppeschaar C, Colizza V, Guerrisi C, Turbelin C, Duggan J, Edmunds W, Kjelsø C, Mexia R, Moreno Y, Meloni S, Paolotti D, Perrotta D, van Straten E, Franco A. Influenzanet: Citizens Among 10 Countries Collaborating to Monitor Influenza in Europe. JMIR Public Health and Surveillance 2017;3(3):e66 View
  25. Wazny K. Applications of crowdsourcing in health: an overview. Journal of Global Health 2018;8(1) View
  26. Ackley S, Pilewski S, Petrovic V, Worden L, Murray E, Porco T. Assessing the utility of a smart thermometer and mobile application as a surveillance tool for influenza and influenza-like illness. Health Informatics Journal 2020;26(3):2148 View
  27. Kolawole O, Oguntoye M, Dam T, Chunara R. Etiology of respiratory tract infections in the community and clinic in Ilorin, Nigeria. BMC Research Notes 2017;10(1) View
  28. Blouin-Genest G, Miller A. The politics of participatory epidemiology: Technologies, social media and influenza surveillance in the US. Health Policy and Technology 2017;6(2):192 View
  29. Farrow D, Brooks L, Hyun S, Tibshirani R, Burke D, Rosenfeld R, Alizon S. A human judgment approach to epidemiological forecasting. PLOS Computational Biology 2017;13(3):e1005248 View
  30. Wazny K. Crowdsourcing’s ten years in: A review. Journal of Global Health 2017;7(2) View
  31. Reese H, Iuliano A, Patel N, Garg S, Kim L, Silk B, Hall A, Fry A, Reed C. Estimated Incidence of Coronavirus Disease 2019 (COVID-19) Illness and Hospitalization—United States, February–September 2020. Clinical Infectious Diseases 2021;72(12):e1010 View
  32. Yano T, Phornwisetsirikun S, Susumpow P, Visrutaratna S, Chanachai K, Phetra P, Chaisowwong W, Trakarnsirinont P, Hemwan P, Kaewpinta B, Singhapreecha C, Kreausukon K, Charoenpanyanet A, Robert C, Robert L, Rodtian P, Mahasing S, Laiya E, Pattamakaew S, Tankitiyanon T, Sansamur C, Srikitjakarn L. A Participatory System for Preventing Pandemics of Animal Origins: Pilot Study of the Participatory One Health Disease Detection (PODD) System. JMIR Public Health and Surveillance 2018;4(1):e25 View
  33. Shausan A, Nazarathy Y, Dyda A. Emerging data inputs for infectious diseases surveillance and decision making. Frontiers in Digital Health 2023;5 View
  34. McNeil C, Verlander S, Divi N, Smolinski M. The Landscape of Participatory Surveillance Systems Across the One Health Spectrum: Systematic Review. JMIR Public Health and Surveillance 2022;8(8):e38551 View
  35. Generous N, Fairchild G, Deshpande A, Del Valle S, Priedhorsky R, Salathé M. Global Disease Monitoring and Forecasting with Wikipedia. PLoS Computational Biology 2014;10(11):e1003892 View
  36. Chunara R, Smolinski M, Brownstein J. Why We Need Crowdsourced Data in Infectious Disease Surveillance. Current Infectious Disease Reports 2013;15(4):316 View
  37. Eales O, McCaw J, Shearer F. Biases in Routine Influenza Surveillance Indicators Used to Monitor Infection Incidence and Recommendations for Improvement. Influenza and Other Respiratory Viruses 2024;18(12) View

Books/Policy Documents

  1. Espey J, Dahmm H. Handbook of Global Health. View
  2. Espey J, Dahmm H. Handbook of Global Health. View