Published on in Vol 5, No 1 (2013):

Bayesian Contact Tracing for Communicable Respiratory Disease

Bayesian Contact Tracing for Communicable Respiratory Disease

Bayesian Contact Tracing for Communicable Respiratory Disease

Authors of this article:

Ayman Shalaby1 ;   Daniel Lizotte1
The full text of this article is available as a PDF download by clicking here.

The purpose of our work is to develop a system for automatic contact tracing with the goal of identifying individuals who are most likely infected, even if we do not have direct diagnostic information on their health status. We developed a dynamic Bayesian network to process the sensors information from users'' cellphones to track the spreading of the pandemic in the population. Our Bayesian data analysis algorithms track the real-time proximity contacts in the population and provide the public health agencies, the probabilistic likelihood for each individual of being infected by the novel virus.