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Abstract

Background: COVID-19 forecasting models have been used to inform decision-making around resource allocation and
intervention decisions, such as hospital beds or stay-at-home orders. State-of-the-art forecasting models often use multimodal
data, including mobility or sociodemographic data, to enhance COVID-19 case prediction models. Nevertheless, related work
has revealed under-reporting bias in COVID-19 cases as well as sampling bias in mobility data for certain minority racial and
ethnic groups, which affects the fairness of COVID-19 predictions across racial and ethnic groups.

Objective: This study aims to introduce a fairness correction method that works for forecasting COVID-19 cases at an
aggregate geographic level.

Methods: We use hard and soft error parity analyses on existing fairness frameworks and demonstrate that our proposed
method, Demographic Optimization (DemOpts), performs better in both scenarios.

Results: We first demonstrate that state-of-the-art COVID-19 deep learning models produce mean prediction errors that are
significantly different across racial and ethnic groups at larger geographic scales. We then propose a novel debiasing method,
DemOpts, to increase the fairness of deep learning—based forecasting models trained on potentially biased datasets. Our results
show that DemOpts can achieve better error parity than other state-of-the-art debiasing approaches, thus effectively reducing
the differences in the mean error distributions across racial and ethnic groups.

Conclusions: We introduce DemOpts, which reduces error parity differences compared with other approaches and generates
fairer forecasting models compared with other approaches in the literature.
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various geographical scales. In the United States, COVID-19
forecasts have been used at the state and county levels to
inform social distancing or masking, such as the publicly

Introduction

Background

Forecasting the number of COVID-19 cases, hospitalizations,
or deaths is crucial to inform decision-making. For example,
COVID-19 forecasts can be used by hospitals to evaluate
medical needs and required resources, such as supplies or
beds, or by public health officials to inform closure policies at

https://ojphi.jmir.org/2026/1/e78235

available forecasts on the COVID-19 Forecast Hub that
the Centers for Disease Control and Prevention (CDC) has
routinely used in their communications [1,2].

Related work over the past 4 years has shown a diverse
variety of COVID-19 forecasting approaches [3-10, 11] using
datasets such as the New York Times (NYT), Johns Hopkins
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University, COVID-19 Community Vulnerability Index,
Google, and Apple [12-16], among others. Most publica-
tions focused on COVID-19 case prediction have reported
results around the accuracy of the models, that is, minimizing
the difference between the predicted cases and the actual
number of cases reported. Nevertheless, previous work has
shown that the accuracy of COVID-19 predictions can depend
on various social determinants, including race or ethnicity
[17], income, or age [18], revealing worse performance for
protected attributes and pointing to a lack of COVID-19
predictive fairness that can affect resource allocation and
decision-making. This lack of predictive fairness might be
related to bias in the datasets used to train the model, that is,
bias in COVID-19 case reporting [19] or bias in mobility data
[20].

Given the presence of bias in the training datasets
frequently used by COVID-19 forecast models, and previ-
ous work demonstrating that COVID-19 prediction accuracy
can vary across social determinants, it becomes critical to
devise methods to prevent data biases from percolating into
the COVID-19 forecasts to guarantee fair decision-making
based on case predictions. In this paper, we focus on in-
processing bias mitigation approaches given their scarcity in
the COVID-19 literature and propose Demographic Optimi-
zation (DemOpts), a debiasing method designed to achieve
COVID-19 case prediction error parity across racial and
ethnic groups in the context of deep learning models, that is,
guarantee that county prediction errors are not significantly
different across racial and ethnic groups. Although there
exists a diverse set of COVID-19 predictive approaches, we
focus on deep learning models because these are the most
frequently used models in the machine learning commun-
ity [21], and narrow down our choice to transformer-based
architectures because they are state-of-the-art in time series
predictions [22].

The main objective of DemOpts is to improve the fairness
of the COVID-19 case predictions at the county level by
achieving error parity in a regression setting [17]. DemOpts
proposes a novel debiasing approach that leverages county
racial and ethnic data during training to modify conven-
tional deep learning loss functions to penalize the model for
statistically significant associations between the predictive
error and the race or ethnicity distribution of a county. Our
main contributions are:

* We present DemOpts, a novel debiasing method for
deep learning architectures that attempts to increase
the fairness of the COVID-19 county case predictions
by achieving error parity, that is, guaranteeing that
prediction errors are similar across racial and eth-
nic groups. The DemOpts architecture is designed to
optimize error parity across race and ethnicity using
a novel multilabel approach that allows each county
to be characterized by its own racial and ethnic group
distribution during the debiasing process, instead of by
a unique label.

* We propose a novel evaluation protocol for the
COVID-19 context, and we show that (1) state-of-the-
art COVID-19 county case prediction models based on
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transformer architectures with no debiasing approach
lack error parity, that is, prediction errors are statis-
tically significantly different across racial and ethnic
groups, (2) DemOpts applied to transformer-based
architectures improves the error parity of the predic-
tion models, increasing the similarity between mean
prediction errors across racial and ethnic groups, and
(3) the DemOpts debiasing approach performs better
than state-of-the-art debiasing methods for regression
settings.

While COVID-19 research was particularly prominent from
2020 to early 2024, challenges related to data biases
and sampling issues in predictive modeling remain highly
relevant. Our approach, leveraging the regression fairness
model DemOpts, provides a robust framework to address
these challenges. As future pandemics and public health
crises arise, similar issues will persist, making our contribu-
tion valuable for ensuring fairness and reliability in predictive
models.

Literature Review

Deep LearningBased Forecasting Models

Deep learning models have started to become popular in time
series prediction tasks. The available methods include (1)
autoregressive models, such as Long Short-Term Memory
or Gated Recurrent Network [23]; (2) graph-based neural
networks, such as graph attention networks [24], Spatio-tem-
poral Graph Convolutional Network [25], neighbor convo-
Iution model [26], or graph convolutional network; and
(3) transformers, including Logarithmic Sparse Transformer
[27], Informer [28], Autoformer [29], Frequency Enhanced
Decomposed Transformer [30], Pyramidal Attention-based
Transformer [31], and Patch Time Series Transformer [32].
In this paper, we specifically focus on the temporal fusion
transformer (TFT) architecture [22], since it allows us to
easily incorporate exogenous variables (eg, mobility data) as
well as static variables (eg, demographic data) on top of the
COVID-19 time series.

Bias in Mobility and COVID-19 Data

The COVID-19 epidemic was closely monitored and had
extensive data available about the counts of cases, hospi-
talizations, and deaths, as well as fine-grained information
about mobility of people, policy implementations, vaccina-
tions, and so on. Reducing the impact of mobility data or
COVID-19 case bias in COVID-19 case predictions, as we
do in this paper, is of critical importance to support deci-
sion-making processes focused on resource allocation during
pandemics, to reduce harm and guarantee that decisions
are fair and just across racial and ethnic groups. Human
mobility data has been used to characterize human behav-
iors in the built environment [33-37], for public safety [38,
39], during epidemics and disasters [40-45], as well as to
support decision-making for socioeconomic development [46-
53]. During the COVID-19 pandemic, human mobility has
played a central role in driving decision-making, acknowledg-
ing the impact of human movement on virus propagation
[7.9,10,18,54]. Previous work has revealed sampling bias in
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mobility data collected via mobile apps, with Black and older
individuals being underrepresented in the datasets [20], and
has exposed biases in COVID-19 forecasting models [55,56].
COVID-19 underreporting bias has been discussed in the
literature [57-59] and points to multiple causes, including
inadequate testing across certain minority groups or a lack
of consistency in reporting race and ethnicity for COVID-19
cases [19].

Fairness Metrics and Fairness Corrections

Transformer-based COVID-19 case forecast models require
the use of fairness metrics for regression settings, given that
the loss optimization process in gradient-based deep learning
architectures uses real-number predictions instead of classes.

Agarwal et al [60], Fitzsimons et al [61], and Gursoy
and Kakadiaris [17] outline the different aspects of fairness
in regression settings and propose a set of fairness met-
rics for regression-type models. For this paper, we use the
error parity metric proposed in [17]. Error parity requires
error distributions to be statistically independent of racial
and ethnic groups. We expand this definition and relax the
statistical significance requirement to be able to also evaluate
whether the proposed DemOpts method can at least reduce
the differences in error distributions across racial and ethnic
groups, even when they are still statistically significantly
different. To correct for bias and unfair performance in deep
learning models, researchers have used preprocessing [62,63]
and in-processing correction approaches [64-67]. Preprocess-
ing approaches focus on creating a better input for learn-
ing deep neural network models by removing bias from
the datasets [62,63], and there have been successful efforts
focused on debiasing underreporting COVID-19 datasets to
estimate actual cases or deaths before they are fed into
predictive models [68,69]. On the other hand, in-process-
ing approaches to improve the fairness of deep learning
models, like the one we use in this paper, focus on the
model and its regularization, usually adding a bias correc-
tion term in the loss function [65,67]. In this paper, we
will compare our proposed debiasing approach against 3
state-of-the-art methods for debiasing in regression settings,
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which are individual fairness correction [70], group fairness
correction [70] (both Lagrangian-based), and sufficiency [71].
Individual and group fairness calculate penalties by determin-
ing overestimations across different groups and weighting
the loss by a factor proportional to the overestimations,
while sufficiency-based regularizers propose to make the loss
independent of sensitive data attributes by simultaneously
training a joint model and subgroup-specific networks to
achieve fair predictions [71].

Methods
Proposed DemQpts

Our modeling focus is on deep learning models, which are
the most frequently used approach for COVID-19 county
case forecasts in the machine learning community [21]. We
specifically focus on the TFT model introduced in [22]
for several reasons. First, this model is state-of-the-art in
interpretable time series prediction [22]. Second, this model
allows for the use of static reals as input to the model (ie,
attributes that do not change over the duration of the training
process, such as demographic percentages or population
statistics). Third, the model works well with time-depend-
ent features, including COVID-19 cases or mobility data,
whereby past data influences future statistics.

DemOpts is an in-processing algorithm that modifies the
standard training procedure for deep learning models at
the loss computation stage. The algorithm modifies conven-
tional loss functions to penalize the model for any statisti-
cally significant association (P<.005) between the county
prediction loss (error) and the county’s racial and ethnic
groups. In other words, DemOpts performs a race-based
correction on the error to account for county demographic,
racial, and ethnic distributions.

The algorithm can be divided into 3 steps (refer to Figure
1, Figure 2, and “S.1 DemOpts Method” in Multimedia
Appendix 1 for mathematical details).
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Figure 1. Algorithm: Demographic Optimization (DemOpts). TFT: Temporal Fusion Transformer.

1: Input: Training set (X, D, Y), Learning rate (Ir), Number of epochs, threshold

2: Output: Trained model (M)

3: X: COVID-19 Timeseries data for all counties
4:Y: COVID-19 cases in future for all counties
5: D: Demographic data for all counties

6: Initialize model parameters randomly

7: for epoch in range(0, epochs) do

8: //sample from X, D, Y of size b

9: for (Xp,Dp,Y,:)in(X,D,Y)do
10: // Forward propagation
11: Ypp = M(X,)

29: return TFT

12: //Calculate QuantileLoss

13: L; = QuantileLoss(Yyp, Ypc)

14: //Find association

15: olsreg = OLS. fit(Dy, Ly)

16: pvals, 3 = olsreg.pvals,olsreg.coef

17: // additional penalty on loss

18: for index in |pvals| do

19: pval;, B; = pvals[index], B[index]

20: // Get the corresponding demographic percentage column and all rows
21: Dy iax = Dpl:, index]

22: if pval; < threshold then //this ensures significant association
23: Ly+= Ly = |B;| * Dp iax

24: end if

25: end for

26: backpropagate(M, Ly)

27: end for

28: end for

Figure 2. Flow diagram for the Demographic Optimization (DemOpts) method.
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Step 1: Calculate Loss

We use quantile predictions, as standard in COVID-19
forecasting literature [2,72], instead of point-value predic-
tions. Quantile predictions are measured for 7 quantiles (0.02,
0.1, 0.25, 0.5, 0.75, 0.9, and 0.98) to gain insights into the
uncertainty ranges and CIs of the COVID-19 county case
predictive models. When using quantile predictions, the error
is computed using quantile loss, also known as pinball loss
(PBL), and defined as follows:

a*(vi—yip)
(q—=1) (¥ = yip)

if yizyp

PBL(yip ¥)) = -
q(ylpy) [ if yi<yip
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Identify dependencies

L=pg*D+a
Step 2
Loss L L.
computation Adjust loss
stept Lo=L+ ) L+|fyl * H(pval) D,
g
Step 3

Adjusted loss computation

For quantile g, the PBL for the prediction of a given input
Xi is PBLy(yip, yi), where y; is the ground truth, and y;, is
the predicted value. The average over all quantiles can be
represented as PBL (yi,, y;) = ﬁZqPBLq (Vip» Y1) -
Step 2: Identify Dependencies Between
Prediction Errors, Race, and Ethnicity

To achieve error parity, that is, mean errors being independ-
ent of racial and ethnic population distributions, we determine
the relationship between errors and race and ethnic distribu-
tions. For that purpose, DemOpts fits a regression model

Online J Public Health Inform 2026 | vol. 18 | 78235 | p. 4
(page number not for citation purposes)


https://ojphi.jmir.org/2026/1/e78235

ONLINE JOURNAL OF PUBLIC HEALTH INFORMATICS

between the prediction losses PBL (yjp.yj) across data points
and their corresponding county race and ethnicity distribution
for each race Dj:
PBL(yip,y:)) = B*Di + a  with  D; = [dy,d,,ds,dy, lookahead|

where d; are the corresponding county demographic features
extracted from the US census data (represented as the
percentage of each racial and ethnic group of the county for
datapoint i), and lookahead refers to the number of days into
the future the COVID-19 case prediction was generated for.
In matrix representation:

PBL(Y;,Y;) =p*D+a

Once the regression model is fit, both regression coefficients
(B) and their statistical significance (P value) are passed on
to Step 3 to modify the adjusted loss and attempt to decouple
race from the errors (loss).

Step 3: Adjust the Loss

DemOpts modifies the conventional loss of deep learning
models by adjusting for racial or ethnic bias in the error,
that is, the loss is increased whenever a statistically signifi-
cant regression coefficient for a race or ethnicity is found in
Step 2 (with P value threshold=.005). By increasing the loss,
DemOpts attempts to reduce the association between errors
and race. Specifically, the loss is adjusted by the product of
the original loss PBL (yjp.yj), the percentage race or ethnicity
D;j that holds a significant relationship with the error, and its
coefficient f3; in absolute value:

Ladj = PBL(yip y;) + ZH(pvalj)(|ﬁj| #Dj* L) where
J

if x < 0.005

1
H(x) = {0 if x > 0.005

Evaluation Protocol

In this section, we present a novel evaluation protocol to
assess changes in fairness for TFT forecasting models when
debiasing approaches, including DemOpts, are applied. We
first describe the TFT COVID-19 county case prediction
model we use, and the different debiasing approaches we
evaluate on that prediction model. Next, we describe the
error parity metrics we use to evaluate the fairness of each
prediction model, and finally, we present the approach to
analyze whether DemOpts improves the error parity metrics
when compared to other state-of-the-art debiasing approaches
for regression settings.

Predictive Model and Debiasing Approaches

We use the TFT with the conventional PBL function (PBL
is the standard metric for reporting model performance in
CDC Forecast Hub [2]) as our baseline model (TFTgageline)
to predict the number of COVID-19 county cases for a given
day.
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Input data to the TFT model includes past COVID-19
cases per county, mobility data from SafeGraph, and race
and ethnicity data for the county. We also train and test
another TFT enhanced with the DemOpts debiasing method,
TFTpemopts, that adjusts the loss computation to attempt
to eliminate or reduce the dependencies between error and
race to achieve error parity. In addition, we train and
test 3 more TFTs enhanced with state-of-the-art debiasing
methods for regression settings, namely, individual fairness
TFTndividual [70], group fairness TFTGoup [70], and the
sufficiency-based regularizer TFTgyficiency [71]. Individual
and group fairness methods calculate penalties by determin-
ing overestimations across different groups and weighting
the loss by a factor proportional to the overestimations,
while the sufficiency-based regularizer trains a joint model
and group-specific networks to achieve fair predictions. We
replicate their methodology and adapt it to the forecasting
setting by keeping TFT as the common network.

Measuring Model Fairness

We choose error parity as our fairness metric [17], with a
focus on evaluating whether the distribution of predictive
errors at the county level is independent of county majority
race and ethnicity, that is, prediction errors are not statisti-
cally significantly different across racial and ethnic groups.
To measure the fairness of each of the models TFTRaeline,
TFTpemopts: TFTndividual: TFTGroupand TFTsyfficiency, We
propose a 2-step process.

Step 1: Associate Errors With County Race or
Ethnicity

To carry out the fairness analysis, we need to associate
the PBL error of each county with race and ethnicity
labels. However, that would require access to race-stratified
COVID-19 case data at the county level, which is unfortu-
nately not available due to systemic data collection failures
during the pandemic [73]. Hence, we propose to associate
each county and its error with the majority race, that is,
we label each county with the race or ethnicity that has
the highest population percentage in that county. During the
fairness analysis, we refer to majority White counties as the
unprotected group and majority minority counties, such as
Black or Hispanic, as the protected groups (details about
the racial and ethnic groups considered in the evaluation are
provided in the “Datasets” section).

In addition, we normalize each county’s PBL error
by county population size. The normalization by county
population allows us to scale the errors appropriately, since
higher-population counties will have higher case counts and
thus, higher-magnitude errors. Normalizing by population
fairly compares the error per unit population of one county
with another:

NormPBL (y,;, ) = Bob:
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where yy is the ground truth, yp; is the predicted value, and
pop; is the county population.

We then calculate the average normalized PBL for each

racial or ethnic group:

Zi €cg NOFmPBL(ypi, Yn)

e

AvgNormPBL(y,, v, 8) =

where g represents the racial or ethnic group and cg is the set
of all counties with as the majority group. This gives us the
average normalized PBL for each demographic group.

Step 2: Compute Fairness Metric

Once PBLs have been calculated for each racial and ethnic
group in the United States, we can compute the error parity,
that is, the fairness metric focused on evaluating whether the
prediction errors are different across race and ethnicity. We
propose 2 metrics to measure the error parity of COVID-19
county case predictions: hard error parity and soft error parity.

Hard Error Parity Metric

Model predictions exhibit hard error parity when no
statistically significant differences exist between normalized
mean case prediction errors (AvgNormPBL) across racial or
ethnic groups. In other words, normalized mean PBL errors
across counties of different racial and ethnic groups are
similar and hence, not biased by race or ethnicity. To test
for the hard error parity of a prediction model, we propose to
run one-way ANOVA followed by post hoc Tukey honestly
significant difference (HSD) tests between the normalized
mean error distributions of all racial and ethnic groups.
ANOVA tests are an adequate choice even in violation of
normality for large sample sizes, and in the presence of
unequal sample sizes with homogeneous variance; thus, we
choose this parametric test due to its superior strength [74,
75].

Rejecting the null hypothesis for ANOVA would point to
significantly different mean error values across some racial or
ethnic groups and to a lack of perfect hard error parity. The
subsequent analysis of the post hoc Tukey HSD test would
reveal the pairs of racial and ethnic groups whose mean error
values are significantly different and the numerical difference.
The Tukey test also highlights the pairs of racial and ethnic
groups for which the mean error is not statistically signifi-
cantly different, pointing to instances where hard error parity
exists for that model.

Soft Error Parity Metric

Instead of measuring the statistical significance of the
relationship between county race labels and county errors, we
propose to use the Accuracy Equity Ratio (AER) metric [76].
AER computes the ratio between the errors of the protected
and unprotected groups as follows:

AvgNormPBL (¥, y1, Pg)

AER,, =
pg AvgNormPBL (yp,y[, unpg)
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where subscript pg indicates counties labeled as the protected
group (majority minority counties). unpg indicates counties
labeled as the unprotected group (White), and AvgNormPBL
is the average of the normalized PBL across counties for a
given racial group g (pg or unpg).

As defined, the AER metric goes from O to «. AER values
in the range [0, 1] indicate comparatively lower normalized
PBL for protected groups, which means the model predictions
could be biased—have higher errors—for White majority
counties; while AER values larger than one indicate that the
model could be biased against the protected group, that is, the
prediction errors are larger for counties with majority-minor-
ity groups. Values close to 1 indicate parity in error distribu-
tion between the protected group counties and the majority
White counties. We claim that a predictive model achieves
soft error parity for a given protected group when the AER
value is close to 1, that is, the mean predictive error between
that protected group and the White race is similar.

An alternative approach to assigning majority race or
ethnicity would be to explore the associations between PBL
errors and the distribution of racial and ethnic groups in a
county (independent of COVID-19 cases, since that data are
not available). Using a quantile regression, we can explore
whether DemOpts eliminates significant associations between
racial or ethnic percentages and the PBL errors, or at least
reduces their magnitude. This approach removes the majority
race requirement, but does not allow us to perform analyses
with well-established fairness metrics in the literature, such as
AER. Results are provided in the Multimedia Appendix 1.

DemOpts Over State-of-the-Art

To assess whether DemOpts is a better debiasing approach
than state-of-the-art methods, we need to compare the error
parity metrics of the COVID-19 county case prediction
model enhanced with the DemOpts method, TFTpemopts,
against the error parity metrics of the same prediction model
enhanced with the other debiasing approaches (individual
TFTndividuals group TFTGroup, or sufficiency TFTigyfficiency)
as well as with the baseline COVID-19 county case prediction
model without any debiasing approach, TFTgaeline- Next, we
describe how we carry out this analysis for the hard and soft
error parity metrics.

Hard Error Parity

We computed the hard error parity metric for each of the
COVID-19 county case prediction models, using one-way
ANOVA and the post hoc Tukey HSD test. An exploration
of the statistical significance of the mean error difference
for each pair of racial and ethnic groups will reveal whether
applying DemOpts to the COVID-19 case prediction model
produces fewer instances of significant mean error differen-
ces than any of the other debiasing methods or the baseline.
In other words, a decrease in the number of significantly
different mean PBL errors between races would point to an
achievement of hard error parity for more racial and ethnic
groups than other state-of-the-art debiasing approaches or the
baseline.
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Soft Error Parity

To assess whether DemOpts applied to a COVID-19 case
prediction model has higher soft error parity than any of
the other state-of-the-art debiasing approaches, we propose
to compare the AER values for each protected race and
ethnic group across the 5 models: TFTpemoptss TFTndivid-
val> TFTGroup, TFTSsufficiency, and TFTpageline- Since AER
values represent the quotient between the normalized mean
prediction errors of a protected race or ethnicity vs White
counties, the model with AER values closer to 1 will be
the approach with the highest soft error parity. To measure
AER’s distance to 1, we compute the distance=I1-AER,cc!
for each race and ethnic group, which represents the distance
to a perfect soft parity error of 1. Distances closer to zero
reveal better soft error parities.

Datasets

In this section, we discuss the datasets we use in the DemOpts
evaluation in the “Results” section. We train COVID-19

Awasthi et al

county case prediction models for the United States using
COVID-19 case data, as well as mobility and demographic
data. Mobility data has been used by previous work to
inform case predictions via human mobility behaviors, under
the assumption that the way people move might have an
impact on the spreading of the epidemic. On the other hand,
demographic data, either raw from the census or combined in
different types of vulnerability indices, has also been shown
to help predict COVID-19 prevalence, given the fact that
COVID-19 has heavily affected vulnerable populations [59].

COVID-19 Case Data

We use the COVID-19 case data compiled by the NYT at the
county level [12]. We account for delayed reporting by using
the 7-day daily rolling average of COVID-19 cases (compu-
ted as the average of its current value and 6 previous days)
instead of raw counts. Figure 3 charts the daily COVID-19
reported cases throughout the data collection period.

Figure 3. COVID-19 reported case counts per 1000 population across the United States.

8_

Cases per 1000 population
=Y

Mobility Data

SafeGraph open-sourced the mobility patterns of smartphone
app users at the onset of the pandemic. These data points are
curated by tracking the movements of millions of pseudo-
nymized users via mobile app Software Development Kits
(SafeGraph). Based on the data available, we use the daily
origin-destination (OD) county-to-county flows [77]. OD
flows represent the volume of trips between pairs of counties
across the United States for each day. For OD flows, we
only use SafeGraph inflow (ie, mobility into the county). The
inflow mobility is measured as changes in volumes of flows
with respect to a baseline of normal behavior computed by
SafeGraph using mobility data from February 17, 2020, to
March 7, 2020.

Previous work has shown sampling bias in mobility
datasets, revealing that not all races and ethnicities are
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equally represented due to variations in smartphone penetra-
tion rates [20,78]. It has also been shown that sampling bias
in mobility data can negatively impact downstream tasks such
as COVID-19 forecasting [56]. While the addition of mobility
data could potentially help improve prediction accuracy and
support better decision-making, it also introduces bias. Our
empirical analysis of DemOpts aims to understand whether
the debiasing method proposed in this paper can improve
the fairness of COVID-19 county case predictive models
when mobility data is used as input to the predictive model.
Figure 4 shows the aggregate mobility data across the
country. We see an initial drop in mobility in April (2020-
04), which corresponds to the first lockdown period. We
then observed an increase in mobility a month later, which
partially stabilizes after April.
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Figure 4. Mobility for all ethnic and racial groups.
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Race and Ethnicity Data

We retrieve the race and ethnicity data from each county in
the United States from the 2019 5-year American Community
Survey. This survey collects data annually from all 50 states,
Puerto Rico, and Washington, DC. As described in Step 1
of the evaluation protocol, we associate each county and its
errors with the majority race (ie, we label each county with

Table 1. Majority label counts.
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the race or ethnicity that has the highest population percent-
age in that county). Following this procedure identifies 4
racial and ethnic groups for the majority of counties: Asian,
Black, Hispanic, and White. Table 1 shows the distribution of
US counties into these 4 racial and ethnic groups, and Figure
5 show color-coded maps with the majority racial or ethnic
group for each county.

Majority label Count, n (%)
Asian 6 (0.194)
Black 127 (4.118)
Hispanic 126 (4.085)
White 2825 (91.601)

Figure 5. Counties and majority-based label. (Mapbox and OpenStreetMap were used to create this map [79,80,81].)
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Model Training

For evaluation purposes, we use COVID-19 case and
SafeGraph mobility data from March 18, 2020, to November
30, 2020, for the training (207 days) and testing (49 days)
of the TFT COVID-19 county case prediction models. The
forecast task is the prediction of the number of COVID-19
cases for a given county from day X+1 to X+50, that is, the
following 2 months (long-term forecasting with lookahead
values from 1 to 50). Specifically, we train and test (1)
the TFTRagelines @ TFT prediction model without a debias-
ing method; (2) the TFTidividual, TFTGroup, and TFTgyffi-
ciencys TFT prediction models with state-of-the-art debiasing
methods; and (3) TFTpemopts, @ TFT prediction model
enhanced with our proposed debiasing method. All 5 models
are trained and tested for the same temporal range, and all
are implemented using the PyTorch Forecasting library [82].
We limit the period of analysis to a time before COVID-19
vaccines were available, given that after that event, research
has revealed a less clear relationship between mobility data
and postvaccines COVID-19 case volumes [83]. We use the
prediction errors (PBL) per racial and ethnic group to analyze
and compare the hard and soft error parity of all trained
models.

Ethical Considerations

We used openly available datasets for mobility data (Safe-
Graph), COVID-19 case count (NYT), and demographic
data (American Communities Survey). There was no human
participant recruitment in this study, and thus we did not
require institutional review board approval. All the datasets
were aggregated at the county level and do not pose the risk
of deanonymization.

Results

Hard Error Parity Results

ANOVA tests of the normalized mean PBL error distributions
across racial and ethnic groups for each debiasing approach
were all significant, pointing to a dependency between race
and the normalized prediction errors.

Table 2. ANOVA F test statistics comparing mean prediction errors.

Awasthi et al

Table 2 shows the F statistic and test significance for
each of the prediction models with and without debiasing
approaches. The significant ANOVA tests reveal that perfect
hard error parity is not achieved by any of the debiasing
methods. In other words, for some racial and ethnic groups,
there exist statistically significant differences between their
mean PBL prediction errors of different racial and ethnic
groups; this effect occurs for the TFTg,4eine model as well
as across all the other predictive models enhanced with a
debiasing approach.

Nevertheless, post hoc Tukey HSD tests revealed
interesting, nuanced results, showing significant differences
in errors only between specific pairs of racial and ethnic
groups. Table 3 shows the post hoc Tukey HSD test results
for each COVID-19 case predictive model: the baseline, the
baseline enhanced with 1 of the 3 state-of-the-art debiasing
approaches, and the baseline enhanced with our proposed
method (DemOpts). Each row represents the output of the
post hoc test, that is, the difference between the normalized
mean PBL error of Group 1 and Group 2 (NormPBLGoup1 -
NormPBLGroup2). If the difference is positive, it means that
the normalized mean predictive error is higher for Group 1; if
the difference is negative, the normalized PBL error is higher
for Group 2 (superscript b indicates statistically significant
differences).

The first relevant observation when examining the table
is that the baseline model, focused on predicting COVID-19
county cases with no debiasing approach is highly biased,
with statistically significant differences between the mean
normalized errors across all pairs of races, except for the
comparison between Asian and Black counties as well as
Hispanic and White counties, for which there is no statisti-
cally significant difference. These results reveal that there is
no racial or ethnic group that achieves hard error parity and
motivate our exploration of whether state-of-the-art debiasing
methods or our proposed DemOpts can improve the hard
error parity results of the baseline model.

Fairness method

F statistic (df)

Baseline 1195.3982 (3080)

Group 1455.5282 (3080)

Individual 1469.6982 (3080)

Sufficiency 1195.6512 (3080)

DemOpts® 668.769% (3080)
a4p<.001.

bDemOpts: Demographic Optimization.
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Table 3. Hard error parity analysis. Each value represents the difference between the mean normalized pinball loss for each pair of racial and ethnic

groups and indicates whether the difference is statistically significant.

Groups 1 and 2 Baseline Group Individual Sufficiency DemOpts?
Asian
Black -0.11 -0.20 -0.12 -0.11 1.32
Hispanic -2.30° -2.65° -2.50° —2.29b -0.77¢
White -2.06° -2.51° -2.51° -2.06° -0.96¢
Black
Hispanic —2.18P —2.45b —2.38b —2.17b —2.09b
White -1.94° -231° -2.39b —1.94° -2.29°
Hispanic
White 0.23 0.14 -0.01 0.23 -0.19
DemOpts: Demographic Optimization.
bp<.001.

“These values denote no significant difference between the prediction errors of Asian and White counties and of Asian and Hispanic counties.

When examining Table 3, we can observe that predictive
models enhanced with the individual, group, or sufficiency
debiasing methods do not improve the hard error parity
over the baseline. On the one hand, similarly to the base-
line model, the state-of-the-art debiasing methods (TFTdivid-
vals TFTGroup, and TFTgyfficiency) achieve hard error parity
between Asian and Black counties and between Hispanic and
White counties, that is, the mean error difference between
these counties is not significant, pointing to a fair distribu-
tion of errors. On the other hand, for each pair of racial
and ethnic groups whose prediction error distributions are
significantly different for the baseline (rows with asterisks
in the Baseline column), they remain significantly different
for the individual, group, and sufficiency debiasing meth-
ods (rows with superscript b in the individual, group, and
sufficiency columns).

When examining the significant mean PBL differences
between racial and ethnic groups for the baseline and the
state of the art debiasing models, we observe that all
coefficients have similar values, signaling similar significant
mean PBL differences between racial and ethnic groups
(with values between 1.942 and 2.659 error cases per 1000
population). The sign of the coefficients reveals higher mean
PBL errors for Hispanic and White counties when compared
to Asian or Black counties, and higher mean PBL errors
for White counties when compared to Hispanic counties
across all models. For example, Hispanic and White counties
have mean prediction errors 2.302 and 2.064 cases higher,
respectively, when compared to Asian counties and while
using the baseline model; and Hispanic and White coun-
ties have errors 2.457 and 2.313 cases higher, respectively,
when compared to Black counties using the baseline model
enhanced with the Group debiasing approach.

Moving on to DemOpts, the table shows that our pro-
posed approach is the only debiasing method that achieves
hard error parity in more cases than the baseline, effectively
removing some of the associations between race and ethnicity
and the normalized mean error distribution (PBL). Specifi-
cally, DemOpts removes the significant difference between
the prediction errors of Asian and White counties and of

https://ojphi.jmir.org/2026/1/e78235

Asian and Hispanic counties (refer to values with supercript ¢
in Table 3), effectively achieving hard error parity for Asian
counties, that is, the mean PBL in Asian counties is always
similar to the mean error in counties of all the other racial
and ethnic groups. These improvements occur additionally to
hard error parity already seen in TFTgygeline (hard error parity
between Asian and Black counties and between Hispanic
and White counties), which are also present in the other 3
debiasing methods. In other words, DemOpts improves the
hard error parity of case predictions for 2 additional racial
and ethnic pairs compared with any of the other debiasing
methods.

Finally, when looking specifically at the hard error
parity between protected (Asian, Black, and Hispanic) and
unprotected groups (White), DemOpts achieves hard error
parity for Asian and Hispanic groups; that is, their mean
prediction errors are not significantly different from those of
White counties, while the baseline and the other 3 debias-
ing methods only achieve hard error parity for the Hispanic
group when compared to White counties. These findings with
respect to White counties motivate the evaluation of the soft
error parity of the different models to determine, for example,
whether DemOpts achieves the best soft error parity for the
Black group (since hard error parity was not achieved), or
to see if DemOpts has better soft error parity than other
debiasing methods for Asian or Hispanic groups. Next, we
explore the soft error parity metric for the TFT baseline and
for all TFT models enhanced with debiasing approaches.

Soft Error Parity Results

Table 4 shows the distance to the perfect soft error parity
for each of the debiasing approaches across all protected
racial and ethnic groups. As we can observe, DemOpts has
the smallest values—closest distances to perfect soft error
parity—for Asian and Black counties, while the individual
debiasing method almost achieves perfect soft error parity
for the Hispanic counties. In other words, DemOpts is the
debiasing approach that produces the most similar errors
between Asian and White counties and between Black and
White counties, thereby achieving the largest reduction in
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predictive bias. On the other hand, the Individual debiasing
method achieves errors for Hispanic counties that are closest
to the White group. In addition, it is important to highlight

Awasthi et al

that the Group and Sufficiency debiasing methods achieve
soft error parities that are close to the TFTRgeline, Which is
not enhanced with any debiasing method.

Table 4. Soft error parity analysis. Each value represents the distance (I1-AERqcel) for each protected group and debiasing method. TFTpemopts

achieves the highest soft error parity for 2 of the 3 protected races under study.

Group Baseline Group Individual Sufficiency DemOpts?
Asian 0.811 0.842 0.850 0.811 0.454b
Black 0.764 0.774 0.807 0.764 0.681°
Hispanic 0.093 0.048 0.003" 0.093 0.12
4DemOpts: Demographic Optimization.

bSmallest error parity for the particular group

Overall, these results reveal that DemOpts is the debiasing Why is DemOpts Better?

approach that improves the soft error parity of case prediction
models, with errors for Asian and Black counties being the
closest to errors in White counties. When accounting for
additional factors, DemOpts outperforms the other methods
by reducing the racial associations of model error.

In Table S1 in Multimedia Appendix 1, we provide and
discuss the results for the quantile regression analysis in
detail. Overall, the results confirm our findings with majority
race labels, with DemOpts consistently outperforming other
methods, showing the smallest coefficient magnitude for
associations between the percentage of Asian, Black, and
Hispanic populations and model error.

Discussion

Principal Findings

Through our comparison of model performance for
COVID-19 case prediction across counties of differing racial
demographics, we showed that DemOpts outperforms other
baselines for debiasing predictions. In our analysis of hard
error parity, we found that DemOpts was the only debias-
ing method to eliminate statistically significant relationships
between prediction error and racial demographics when
compared with the baseline. While some significant associa-
tions remained, DemOpts achieved hard error parity for Asian
vs White counties and Asian vs Hispanic counties. In the
soft error parity analysis, DemOps substantially outperformed
the baselines for Asian and Black counties, with a 69.4%
reduction and 23% reduction, respectively, compared with the
next closest method.

The results showed that DemOpts is the only debiasing
approach to achieve both hard and soft error parity for all
3 racial minority groups when compared with White counties.

In an attempt to understand why DemOpts succeeds in
increasing both hard and soft error parity in the context
of COVID-19 county case predictions, and compared with
other debiasing methods, we computed the average PBL
for each racial and ethnic group and for each predictive
model enhanced, or not, with a debiasing method (refer to
Table 5). We observed that DemOpts achieves better hard
and soft error parity metrics because it considerably increa-
ses the errors for Asian and Black counties with respect to
the baseline, until the differences with Hispanic and White
are made not statistically significant (hard error parity) or
closer to the White mean errors (soft error parity). Compar-
ing Tables 4 and 5, we observed that DemOpts achieves
considerably higher fairness for the Hispanic group (when
compared to White) than for the Asian and Black groups
(0.12 vs 0454 and 0.681 in Table 4). As a result, the
average PBL error for the Hispanic group (3.59 in Table 5)
is considerably higher than the Asian and Black racial groups
(1.7 and 1, respectively). We hypothesize that the differences
in average errors and performance across racial and ethnic
groups could be due to differences in the bias present in the
training data, that is, mobility data or COVID-19 case counts
could be more biased for Asian or Black groups, thus making
it harder to achieve fair predictions when compared to White,
and, in turn, due to the fairness-accuracy trade-off, making
them more accurate (lower errors).

Table 5. Group-wise pinball loss for each model. Demographic Optimization (DemOpts) has higher average pinball loss compared to the other

models. The fairness-accuracy tradeoff leads to slightly larger pinball loss values for DemOpts compared to other methods.

Group Baseline Group Individual Sufficiency DemOpts?
Asian 0482 0472 0.444 0.479 1.741
Black 0.600 0.674 0.570 0.598 1.015
Hispanic 2.784 3.131 2951 2.776 3.597
White 2.546 2987 2961 2.540 3.192

2DemOpts: Demographic Optimization.
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These results show that DemOpts’ optimization could not
decrease prediction errors while trying to improve fairness,
showing a fairness-accuracy trade-off that has been repor-
ted previously in the literature [84]. To further clarify this
finding, Figure 6 shows both the average PBL and soft parity

Awasthi et al

across all the models considered in this paper. As shown,
DemOpts has the lowest soft error parity, but the highest PBL
(top-left corner in the plot), while the other models decrease
the PBL by sacrificing fairness (higher error parity in the
bottom-right corner).

Figure 6. Fairness-accuracy tradeoff. Model error (average pinball loss) vs average soft error parity (I1-AERI) for each model.
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Limitations

While DemOpts outperforms other state-of-the-art approaches
in debiasing COVID-19 predictions, there are some limita-
tions to DemOpts and our evaluation. First, DemOpts is
unable to remove all statistical associations for the hard
parity analysis, potentially because doing so would impose
further reductions in model performance. For the soft parity
analysis, the individual fairness approach is best for Hispanic
counties, but the difference in parity levels is small. Regard-
ing evaluation, our focus is exclusively on COVID-19 county
case prediction—while evaluation on other datasets and
prediction tasks would be helpful for future work, our current
evaluation provides sufficient evidence to show its applicabil-
ity to other contexts. In addition, we compare DemOpts to
baselines only on error parity metrics. Other fairness metrics
may apply to the COVID-19 context and should be evalu-
ated in future work, but we focus on error parity because
DemOpts is specifically designed to mitigate it. Finally, we
only compare DemOpts and baseline debiasing approaches
within TFT models—future work should compare with other
commonly used models for COVID-19 case prediction.

Regardless, our novel debiasing approach shows that hard
and soft error parity across protected and unprotected racial
and ethnic groups can improve relative to other state-of-the-
art approaches.

Finally, it is important to clarify that although in this
paper, DemOpts focuses on bias mitigation in COVID-19

https://ojphi.jmir.org/2026/1/e78235

forecasting, it could also be applied to other health forecast-
ing tasks where sampling bias in data collection can lead to
bias in downstream tasks, for example, forecasting flu cases.
These forecasts, when done at the county level and when
using mobility data to model human spread, could benefit
from the DemOpts method by reducing the effect of mobility
bias or case count bias on other infectious diseases.

Conclusion

Researchers have worked tirelessly on the creation of
accurate COVID-19 case prediction models to support
resource allocation and decision-making. However, sam-
pling and underreporting biases in the data used to train
these models have resulted in worse prediction perform-
ance for certain protected attributes, pointing to a lack of
COVID-19 predictive fairness that could affect decision-mak-
ing. In this paper, we show that state-of-the-art architec-
tures in COVID-19 case predictions (TFT models) incur
unfair prediction error distributions, and we design a novel
debiasing approach and evaluation method to increase the
fairness of predictions in the context of COVID-19 county
case forecasts. DemOpts modifies the loss function in deep
learning models to reduce the dependencies between error
distributions and racial and ethnic labels. Our results show
that DemOpts improves both the hard and soft error parity
of COVID-19 county case predictions when compared with
state-of-the-art debiasing methods.
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