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Abstract

Background: Clinical risk prediction models integrated into digitized health care informatics systems hold promise for
personalized primary prevention and care, a core goal of precision health. Fairness metrics are important tools for evaluating
potential disparities across sensitive features, such as sex and race or ethnicity, in the field of prediction modeling. However,
fairness metric usage in clinical risk prediction models remains infrequent, sporadic, and rarely empirically evaluated.

Objective: We seek to assess the uptake of fairness metrics in clinical risk prediction modeling through an empirical evaluation
of popular prediction models for 2 diseases, 1 chronic and 1 infectious disease.

Methods: We conducted a scoping literature review in November 2023 of recent high-impact publications on clinical risk
prediction models for cardiovascular disease (CVD) and COVID-19 using Google Scholar.

Results: Our review resulted in a shortlist of 23 CVD-focused articles and 22 COVID-19 pandemic–focused articles. No articles
evaluated fairness metrics. Of the CVD-focused articles, 26% used a sex-stratified model, and of those with race or ethnicity
data, 92% had study populations that were more than 50% from 1 race or ethnicity. Of the COVID-19 models, 9% used a
sex-stratified model, and of those that included race or ethnicity data, 50% had study populations that were more than 50% from
1 race or ethnicity. No articles for either disease stratified their models by race or ethnicity.

Conclusions: Our review shows that the use of fairness metrics for evaluating differences across sensitive features is rare,
despite their ability to identify inequality and flag potential gaps in prevention and care. We also find that training data remain
largely racially and ethnically homogeneous, demonstrating an urgent need for diversifying study cohorts and data collection.
We propose an implementation framework to initiate change, calling for better connections between theory and practice when it
comes to the adoption of fairness metrics for clinical risk prediction. We hypothesize that this integration will lead to a more
equitable prediction world.
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Introduction

Prediction models are increasingly prevalent in research and
decision-making across a wide swath of fields, from finance to
criminal justice to health care, and are a key building block in
the practice and translation of precision health. Clinical
prediction models, including updated versions of classical
models like the Framingham Risk Score and the Gail Model
[1,2], can leverage granular levels of multimodal data to
optimize the implementation of precision health goals and enable
the identification of high-risk individuals. However, potential
statistical and historical biases ingrained in these models can
impact their accuracy and ethical viability, particularly for
populations at risk of discrimination due to sensitive features

like race, ethnicity, age, or sex (Textbox 1) [3-6]. These risk
prediction algorithms, designed to deliver individualized
prevention strategies, are rarely evaluated across broad and
coarse demographic categories, including the sensitive features
mentioned above. Are these seemingly objective prediction
models furthering existing inequities in precision health?
Particularly as conversational and generative artificial
intelligence tools are further integrated into the clinical
prediction models that determine who is at high disease risk,
who receives an intervention, or who receives prevention
resources [6-8], and as the real-time implementation of these
models in a hospital setting becomes more common [6], it is
critical that these models are fair, providing accurate and
nondiscriminatory predictions.

Textbox 1. Definitions of commonly used sensitive variables (also called sensitive features). Note that the definition of these variables is frequently
left ambiguous in practice, raising the possibility for harmfully conflating the social and the biological.

Sensitive variables and their definition

Social variables

Variables are based on an individual’s lived experience. Frequently self-reported.

• Race

A social construct based on perceived physical differences that often acts as a proxy for various social and health consequences of racism in
modeling [9]. Frequently paired with ethnicity, though they are not strictly equivalent. Includes no biological information.

• Ethnicity

A social construct based on shared culture, language, geography, religion, and history [10]. Frequently paired with race, though they are not
strictly equivalent. Includes no biological information.

• Gender

A social construct that refers to an individual’s self-presentation in society, informed by culture, psychology, and society [11]. Though distinct
from sex, this variable often indirectly captures sex’s impact.

Biological variables

Variables are based on an individual’s biology.

• Genetic ancestry

Genetic similarities between people due to common ancestors [10]. Distinct from race. Strictly biological.

• Sex

The biological factors used to categorize individuals as male, female, or intersex [11]. Since 2016, it has been a required covariate in NIH-funded
research. Though distinct from gender, this variable often indirectly captures gender’s impact.

Algorithmic fairness is closely related to but theoretically
distinct from algorithmic bias, another important consideration
for assessing model performance. For further discussion of the
subtle differences between these concepts, we refer the reader
to the nuanced comparisons in [12,13]. We focus on algorithmic
fairness in the current paper. Algorithmic fairness is concerned
with designing algorithms and artificial intelligence models in
a way that minimizes or mitigates bias and ensures fair treatment
for all individuals or groups affected by the model [12,13].
Achieving algorithmic fairness requires careful consideration
of the design, development, and deployment of models,
including the selection of appropriate training data and the

incorporation of fairness metrics to evaluate model performance
on test data.

In recent years, several metrics have been introduced to evaluate
the fairness of prediction models [14], alongside various coding
toolboxes for their computation and implementation [15,16].
These metrics differ from common prediction metrics measuring
discrimination, accuracy, and calibration, which measure overall
model performance [12]. These fairness metrics typically aim

to assess differences in model predictions ( ) for a binary
decision outcome Y (eg, treatment or no treatment) for different
values of a sensitive categorical variable S (eg, male or female
sex), thus giving a numerical sense of how fair or unfair a model
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may be. The common practice is to provide point estimates of
a fairness metric; while fair inferential methods have been
proposed [17], uncertainty quantification and interval estimation
are not yet widely adopted in fairness research. Some of the
most cited and used fairness metrics are listed and summarized
in Table 1.

Though quite simple in terms of their definition, such metrics
can shed light on otherwise unseen disparities in a model or
dataset. For these metrics to produce meaningful results, a clear
interpretation of the predictor and sensitive variables used is
required in addition to how they affect the outcome of interest
Y. For the sensitive features that fairness metrics usually seek
to assess, it is not always simple to explain what they represent.
Sensitive features often have multiple definitions and

interpretations, particularly when it comes to what is biological
versus what is socially constructed. This ambiguity is especially
important for sex and race or ethnicity, 2 of the most used
variables in learning algorithms. Sex is a biological variable,
but it will likely capture effects from an individual’s gender,
information that might be the actual cause behind the sex
variable’s recorded influence on an outcome of interest. In the
case of race and ethnicity, these variables are often self-reported,
and thus their exclusive social nature is not always made clear,
allowing for the inaccurate and harmful conclusion that
differences observed with such race and ethnicity variables have
a biological basis. Textbox 1 offers definitions of different
measures related to these 2 specific sensitive variables and
highlights how interpretations can be conflated and may not
align with their intended use.

Table 1. Commonly used fairness metrics [18-21]. =Prediction or decision, Y=Observed data, and S=Sensitive feature, in the case of S being a

multi-group variable where a comparison with a reference or privileged group is meaningful. and Y are binary variables.

DefinitionEquationMetric

Both groups should have equal true positive and false
positive rates.

Equalized odds

Both groups should have equal true positive rates. A re-
laxed version of equalized odds.

Equal opportunity

The rate of false positives (negative events categorized
as positives) should be independent of the sensitive fea-
ture.

Predictive equality

The rate of false negatives (positive events categorized
as negatives) should be independent of the sensitive fea-
ture.

False negative rate
parity

Model precision should be the same for both groups.Predictive parity

The prediction or decision should be independent of the
sensitive feature.

Demographic parity

The risk of including sensitive variables only to misinterpret
them in a way that furthers inequity has led to an ongoing debate
about the place of these sensitive features in clinical risk
prediction models. Exclusion of such sensitive features is 1
possible solution, mostly discussed in the context of
self-reported race or ethnicity [22], though this kind of “fairness
through unawareness” is not always successful and can in some
cases further inequities [23]. The use of appropriate fairness
metrics is another possible solution. Even when fairness metrics
are used, however, the operationalization regarding the
measurement of sensitive variables like race or ethnicity can
differ from culture to culture, posing further challenges in
assessing fairness. For example, while the United States
predominantly gathers data on race rather than ethnicity, many
European countries focus instead on ethnicity and nationality
as indications of socially constructed differences [24]. The use
of fairness metrics for sensitive variables that mire diverse
definitions across geography and clinical studies remains a
complex issue. Sociocultural adaptation of the definition and
measurement of sensitive variables is needed for appropriate
adoption of fairness. As our focus is on the specific contextual
application of fairness metrics, we leave the nuances of this

broader issue to many other excellent papers that explore the
concept at length [3-5,9,12,18,19,24].

As prediction models are increasingly embedded into electronic
health records to realize the goal of precision health [25,26],
determining the intended use of sensitive features is crucial.
How widely such metrics are used or reported in the clinical
risk prediction literature is rarely objectively quantified. Thus,
to gather empirical evidence to substantiate our viewpoint, we
sought to examine the usage of fairness metrics in clinical risk
prediction through a scoping review of recently published risk
prediction models in high-impact journals for two diseases:
cardiovascular disease (“CVD,” a long-studied chronic and
noncommunicable disease) and COVID-19 (a recently emerged
infectious disease). Before looking at the data, we hypothesized
that there would be little reporting of fairness metrics in CVD
research, where many studies span years and began long before
discussions of fairness metrics in the prediction literature, but
that the emergence of the COVID-19 pandemic would pose an
opportunity to more frequently incorporate modern advances
in fairness metrics into predicting disease outcomes.
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Methods

A scoping literature review was conducted for each disease of
interest. Our outcomes of interest differed slightly between
CVD and COVID-19: the clinical risk prediction models for
CVD focused on the fatal and nonfatal risks of CVD, while the
models for the COVID-19 pandemic focused on the risk of
mortality and severe disease. We did not use a classic systematic
literature review approach, as our priority was to expediently
capture the trend in the highest impact papers. We sought only
high-impact papers to understand the prevailing, dominant
practices of the field. Figure S1 in Multimedia Appendix 1
details the reproducible steps taken and search terms used for
data collection and extraction.

The criteria for highly impactful publications differed between
CVD and COVID-19, reflecting the difference between a
long-studied disease and an emerging area of study. CVD papers
from the last 10 years (2013-2023) were reviewed and selected
if they exceeded 100 citations and were from journals with
impact factors exceeding 5, while COVID-19 papers from 2021
to 2023 were reviewed and selected if they exceeded 50 citations

for 2021 papers or exceeded 10 citations for 2022 to 2023
papers, both from journals with impact factors over 5.
Systematic reviews and meta-analysis papers were excluded
from the results.

Results

Results From the Literature Review on CVD
The Google Scholar search query: allintitle: “prediction” “risk”
“cardiovascular disease” OR “heart attack” OR “heart disease”
OR “mortality” OR “death” -“systematic review” with a time
range of 2013-2023 on November 3, 2023, returned 1970 results
(Figure 1). For the purposes of our informal review, we reviewed
the top 1000 returned by the Google Scholar algorithm. The
yielded results were selected if they exceeded 100 citations and
were from journals with impact factors exceeding 5. This
provided a shortlist of 23 articles predicting the risk of a fatal
or nonfatal CVD event that we then divided based on the target
population (general population or a specific subpopulation).
Tables S1 and S2 in Multimedia Appendix 2 and Figure S1 in
Multimedia Appendix 1 of the supplementary material provide
details.

Figure 1. PRISMA flow diagram of the literature search process.

Of the 17 CVD papers focusing on a general population that
met the criteria of this review (Table S1 of Multimedia
Appendix 2), none discussed fairness metrics. Of these 17
papers, 5 (29%) stratified their models by sex (ie, built different
models for each sex), and 11 (65%) included sex as a covariate.
Of these 17 papers, 9 (53%) included data on race or ethnicity
(as many of the papers paired race and ethnicity together or
used them interchangeably, we will refer to any discussion of
either as race or ethnicity jointly, despite this being an imprecise
practice). Only 5 of these 9 were multiracial or multiethnic
(more than one racial or ethnic group identified), and 4 of these

studies included race or ethnicity as a covariate. No study
stratified its model by race or ethnicity (Figure 2). The 8 studies
that did not include race or ethnicity data were based in the
United States or Europe. Other sensitive features considered in
the studies include body mass index, stratification by CVD
mortality risk regions, and area-based measures of deprivation.

Similar results were observed in the 6 CVD papers that focused
on specific subpopulations, ranging from those with chronic
conditions to those from specific ethnic or age groups (Table
S2 in Multimedia Appendix 2). Of these 6 studies, 3 (50%)
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included sex as a covariate; only 1 stratified the prediction model
by sex (Figure 2). All but one study included self-reported race
or ethnicity data, yet only 3 (50%) were multiracial or
multiethnic, and only 2 (33%) considered race or ethnicity as
a covariate. Other sensitive features considered in the studies
include geographic region, level of urbanization, and obesity.

Considering the general population and subpopulation papers
together, 6 of the 23 (26%) CVD papers used a sex-stratified
model, and of the 14 papers with race or ethnicity data, 13 (92%)
had study populations where over 50% of participants were of
a particular race or ethnicity.

Figure 2. Counts depicting how many of the reviewed articles include race or ethnicity and sex as either predictors or stratification factors in their
clinical risk prediction models, separated by disease of interest and population focus of the article. For cardiovascular diseases (CVD), the outcome
considered was the risk of cardiovascular disease, heart attack, or heart failure, whereas for the COVID-19 pandemic, it was hospitalization and death.

Results From the Literature Review on COVID-19
The Google Scholar search query: allintitle: “covid” “risk”
“predict” OR “prediction” AND “hospitalization” OR
“mortality” OR “severity” OR “death” with a time range of
2021-2023 on November 13, 2023, returned 2970 results. For
the purposes of our informal review, we reviewed the top 1000
returned by the Google Scholar algorithm. These results were
then selected if they exceeded 50 citations for 2021 papers and
exceeded 10 citations for 2022 to 2023 papers, both from
journals with impact factors over 5. This yielded a shortlist of
22 articles predicting the risk of COVID-19 hospitalization or
death that we then divided based on the target population
(general population or a specific subpopulation). Tables S3 and
S4 in Multimedia Appendix 2 and Figure S1 in Multimedia
Appendix 1 provide details.

Of the 12 COVID-19 papers (Table S3 in Multimedia Appendix
2) focusing on a general population that met the inclusion
criteria, none mention fairness metrics. Of the 12 papers, 10

(83.3%) have sex as a covariate included in the prediction
model; only one (8.3%) paper stratified participants by sex.
These 5 of the 12 (41.7%) papers considered race or ethnicity,
all of which included it as a covariate; none stratified by race
or ethnicity (Figure 2). Of the remaining 7 papers, 3 cited a
dearth of diverse data as the reason for lacking race or ethnicity
information; 1 assumed the population to be entirely White;
and the other 3 made no comments on race or ethnicity. Other
sensitive covariates explored include patient-level
socioeconomic index, geographical region, or hospital region.

Similar results were observed in the 10 COVID-19 papers that
focused on specific subpopulations, ranging from those with
pre-existing chronic diseases to age-specific groups like older
adults and infants (Table S4 in Multimedia Appendix 2). All
10 papers included age as a risk factor. Similarly, all 10
considered sex in their models. One paper implemented
stratification by sex, while all others (90%) used sex as a
covariate. Of these 10 papers, 5 (50%) included race or ethnicity
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data, and all used it as a covariate. Though there was very little
stratification by sex and none by race or ethnicity (Figure 2),
stratification was undertaken for various other risk factors, such
as the type of medication used and geographical location.

Considering the general population and subpopulation papers
together, 2 of the 22 COVID-19 papers (9%) used a
sex-stratified model, and of the 10 papers with race or ethnicity
data, 5 (50%) had study populations where over 50% of
participants were of a particular race or ethnicity.

Discussion

In our literature review, we found that assessing differences in
model performance across sensitive features was somewhat
common (eg, comparing areas under the receiver operating
characteristic curves across sex or race), but discussing the
implications of these differences for fairness and using
appropriate fairness metrics were rare. There are several
limitations of our approach. Our search was limited to highly
cited papers in journals with high impact factors using the
Google Scholar database and could have missed important
articles; furthermore, we focused on only 2 diseases out of the
many for which clinical risk prediction models are developed,
restricting the generalizability of our findings to the broader
class of clinical risk prediction models. Even though COVID-19
modeling began well after the field of fairness metrics was
flourishing in quantitative research, in our review, their usage
was as absent among COVID-19 studies as among CVD studies.
It is our view that there are 2 primary reasons for the scarcity
of fairness considerations in clinical risk prediction: a lack of
diverse data and a lack of clarity on the best practice for using
fairness metrics.

A lack of diverse data pervaded the studies in our review and
was particularly prominent in terms of variation in race or
ethnicity and geography. Though over half of the studies in the
identified high-impact CVD-related papers reported on
multiracial or multiethnic groups (as in, more than one racial
or ethnic group reported) the data used in model development
were still predominantly from 1 race or ethnicity. For example,
in a study by Hippisley-Cox et al [27] with multiethnic data,
though over 9 million patient records were used in the analysis,
over 85% of subjects either self-reported their ethnic origin as
White or did not report this information; other ethnic origins
(like Indian, Black Caribbean, and other groups) made up less
than 15% of patients. There was more racially or ethnically
diverse data in the COVID-19–related papers: of the 10 papers
with multiracial or multiethnic data, only half reported a study
population of over 50% 1 race or ethnicity. The observed
dominance across a single race or ethnicity implies that, for
many studies, the lack of sufficient data to test-train models in
each race-ethnic group separately makes fairness assessment
challenging to begin with. In terms of geography, there was
little diversity (Figure S2 in Multimedia Appendix 3) for either
disease: the vast majority of reviewed studies were from the
Global North.

Another limitation regarding the diversity of the data involved
the definitions of race or ethnicity used in these studies. As
mentioned in the Introduction, one important first step in using

sensitive variables in risk prediction models is to clearly describe
their intended use, such as whether they are designed to capture
social attributes, biological features, or lived experiences. Of
the 24 papers that had information on race or ethnicity, only 6
explicitly stated that the race or ethnicity variables were
self-reported (25%); 2 papers directly described their study
populations by genetic ancestry instead of by self-reported race
or ethnicity (8.3%). The other 16 papers gave no
contextualization to the way race or ethnicity data was measured,
interpreted, and used, raising the risk of confusing the social as
biological [23]. More exact details on the racial or ethnic
makeup of the reviewed papers and how race or ethnicity was
used and defined in each study are provided in Tables S1-S4 in
Multimedia Appendix 2.

For some studies, however, such as those whose models were
stratified by sex or study region, sufficient data did exist for
computing and providing fairness metrics. Some of these studies
did use discrimination and calibration metrics to assess the
overall model fit across different subgroups (such as across race
or ethnicity), though such analysis was not routinely conducted.
Regardless, high discrimination and calibration alone do not
guarantee model fairness, as aggregated data can easily mask
inequalities [28,29]. From these studies, it appears that fairness
analyses simply have not yet been adopted as a part of the model
assessment routine.

The lack of clarity as to how best to approach model fairness
may have contributed to this practice. Even when the
opportunity for the use of fairness metrics is obvious, the
question of how to properly leverage them remains complex.
There is no “one size fits all” method or universal fairness
metric: instead, the specific context of the target outcome
(whether it is a preventative intervention or a limited-resource
treatment, for example) must inform how relevant concerns of
fairness are, and what metrics can address the concerns [12].
Many fairness criteria are in fact mutually incompatible in
practical settings (for example, demographic parity and
equalized odds) [5], requiring a case-by-case decision on what
kind of fairness (and thus fairness metric) will be most
meaningful for the data and situation at hand. The limitations
of many of the most common fairness metrics can also make
their use inapplicable or unappealing for certain models. For
example, most metrics are designed to assess only dichotomous
outcomes and would require recalculation if a model’s
predictions involved different cutoffs of the underlying
continuous measures for different decisions. Yet, no critical
number of developed fairness metrics will change practice; it
is not an issue of lack of methods, but of implementation.
Despite similar challenges, fairness methods have already been
adopted in a variety of other predictive modeling fields,
including criminal justice, finance, and computational linguistics
[30-32].

One may pose the question if any clinical risk prediction
modelers have used fairness metrics successfully but did not
qualify for our scoping review due to its focus on only CVD
and the COVID-19 pandemic and only highly cited papers in
high-impact journals. To answer this question, we ran a
high-level PubMed query of “fairness” AND “risk prediction”
in all fields on January 6, 2025. This search returned 5 papers
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[33-37] on newly developed clinical risk prediction models for
a variety of diseases, including preeclampsia, postpartum
depression, and CVD, one of our diseases of interest. These
papers made fairness metrics a core part of their model
assessment and diagnostics but did not meet our criteria for
inclusion in our review. For example, Liu et al [33] postpartum
depression prediction model was first made to satisfy equal
error rates between White and non-White individuals as the
primary fairness metric; then debiasing techniques, including
reweighing and fairness through blindness, were tested to
improve the positive prediction rates between White and

non-White individuals. These 5 studies acknowledged the
limitations of fairness metrics and the impossibility of satisfying
them all simultaneously and clearly defined their sensitive
attributes. These new papers and others [38-40] can serve as
helpful reference points for researchers as examples of attainable
initial starts for fairness considerations when sensitive variables
are measured.

Our own recommendations for how one can permeate and
change practice in terms of adopting fairness as a core criterion
and principle in clinical risk prediction are listed below and
illustrated in the roadmap of Figure 3.

Figure 3. Strategies for increasing the adoption of fairness of clinical risk prediction models in precision health: Interpret, Implement, Connect and
Collect (I2C2).

Roadmap and Recommendations for Changing
Practice
We recommend the following 4 strategies for increasing the
fairness of clinical risk prediction models across sensitive
variables in precision health practice (I2C2).

• Interpret: In line with the NIH’s requirement of including
(or justifying the exclusion of) a biological sex variable
[41], papers should interpret, justify, and explain their
intended use and conceptualization of sensitive features in
risk prediction models.

• Implement: Influential guidelines like EQUATOR
(Enhancing the Quality and Transparency of Health
Research) TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis) guidelines [42] should include steps on
considering algorithmic fairness as part of the
implementation and application of clinical risk prediction
models.

• Connect: The community of methods research in
algorithmic fairness should ensure that the methods and

tools developed are well broadcast to those in the
community of practice in clinical health care, connecting
theory to practice.

• Collect: The fields of clinical risk prediction and precision
health should highly prioritize collecting inclusive,
multimodel data across race, geographic region, and a
variety of other sensitive or historically underrepresented
features.

To understand the current barriers in the precision health practice
community, we have developed a short questionnaire to help
authors identify key challenges in implementing fairness metrics.
This questionnaire will help clarify where resources should be
most concentrated for this I2C2 roadmap. The questionnaire
can be accessed here, and Table S5 in Multimedia Appendix 4
shows the summary questions. We hope by educating and
enabling public health and clinical practitioners on the
importance of assessing fairness metrics, we will create a more
equitable prediction and precision prevention world for all.

All materials used for this review can be accessed via the GitHub
of the University of Michigan Center for Precision Health Data
Science.
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