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Abstract
This paper introduces population digital health (PDH)—the use of digital health information sourced from health internet of
things (IoT) and wearable devices for population health modeling—as an emerging research domain that offers an integrated
approach for continuous monitoring and profiling of diseases and health conditions at multiple spatial resolutions. PDH
combines health data sourced from health IoT devices, machine learning, and ubiquitous computing or networking infrastruc-
ture to increase the scale, coverage, equity, and cost-effectiveness of population health. This contrasts with the traditional
population health approach, which relies on data from structured clinical records (eg, electronic health records) or health
surveys. We present the overall PDH approach and highlight its key research challenges, provide solutions to key research
challenges, and demonstrate the potential of PDH through three case studies that address (1) data inadequacy, (2) inaccuracy
of the health IoT devices’ sensor measurements, and (3) the spatiotemporal sparsity in the available digital health information.
Finally, we discuss the conditions, prerequisites, and barriers for adopting PDH drawing on from real-world examples from
different geographic regions.
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Introduction
Population health modeling, the monitoring and profiling
of spatially fine-grained prevalence of diseases and health
conditions, is a critical and key aim for public health [1].
Having accurate and timely information about the citizens’
health is essential for informing health policy decision
makers, for optimizing care delivery, and in general for
improving health outcomes. Detailed profiling and monitor-
ing of diseases can also guide response to emerging health
threats such as pandemics, assist in care delivery logistical
planning and resource allocation, and the early detection

of localized health-related phenomena. A deeper understand-
ing of diseases’ interrelationships and epidemiology is also
foreseen to play a key role in the future of health care and in
sustaining improved health outcomes [2].

Current solutions for monitoring and profiling diseases,
such as curating and linking data from electronic health
records (EHRs) and health surveys [3], are expensive and
have limited spatiotemporal coverage and scale and mostly
target developing medical conditions rather than offer insights
that can be used to help design policies for their preven-
tion or early detection. These limitations in the availability
of information restrict the conclusions that can be drawn.
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As a result, current solutions are capable of estimating
overall disease prevalence and identifying risk factors but
unable to offer continuous insights into the current health
of the citizens. Improving the scale and coverage of pub-
lic health models, and consequently the insights about the
health of the citizens, requires new ways to cost-effectively
collect continuous information about disease onset, health of
individuals, and factors affecting them.

This paper introduces population digital health (PDH)—
the use of digital health information sourced from health
internet of things (IoT) and wearable devices for popula-
tion health modeling—as an emerging research domain that
offers an integrated approach for continuous monitoring and
profiling of diseases and health conditions at multiple spatial

resolutions. PDH is driven by the emergence and wide-
spread adoption of digital personal technologies for health
care, including health IoT devices and wearable technology
for wellness and personal health monitoring, and advances
in machine learning (ML) and artificial intelligence (AI)
techniques capable of analyzing and extracting insights from
complex real-world data streams by using powerful edge and
cloud computing infrastructure that mobilizes intelligence and
delivers requisite computational resources. Figure 1A and B
show a high-level illustration of the PDH vision, highlighting
the potential of using IoT and personal health devices as an
alternative source of data that can modernize (digital) health
monitoring, profiling, and reporting to support health care.

Figure 1. High-level overview of the potential of using personal health devices for population health modeling (A). The devices monitor individuals,
and their data construct a continuous population health model that can be used as basis for health care and health policy decision-making. The key
technical challenges that need to be solved are highlighted in the technical framework (B). AI: artificial intelligence; IoT: internet of things.

Realizing and adopting PDH modeling require addressing
challenges in the way data are collected, analyzed, aggre-
gated, and used to derive actionable insights, and lifting
the barriers in technical and social hurdles relevant to the
development of population health modeling (see section
“PDH: A Research Agenda”). These challenges differenti-
ate PDH and drive its research agenda. Specifically, PDH
focuses on population health, that is, individual subcommuni-
ties or groups, instead of the general public, differentiating it
from policy making, surveillance, and the modeling of health
outcomes for the broader public, as explored by digital public
health [4]. PDH targets etiology and identification of disease
markers using wearables and other forms of digital data
instead of targeting the diagnosis or treatment of diseases,
as explored in (digital) precision medicine [5]. Similarly,
while data from wearables and health IoT devices are used in
mobile and pervasive health care [6-8], this differs from PDH
which harnesses the data for modeling entire populations.
Finally, while data are central tenet in many related fields,
such as digital epidemiology [9] and precision public health

[5,10], PDH specifically targets the challenges in enabling
accurate and reliably continuous monitoring and profiling.

We present the overall PDH approach and highlight its
key research challenges for PDH to establish a road map
for delivering a highly accurate, cost-effective, scalable,
equitable, and clinically trusted and actionable population
health alternative. We also demonstrate the feasibility of
PDH and highlight its benefit through three case studies
targeting key challenges: (1) inadequacy of digital health
information, (2) inaccuracy of sensor data on health IoT
devices, and (3) spatiotemporal data sparsity in digital health
information. The results demonstrate that PDH is a promising
direction for increasing the scale and coverage of popula-
tion health information and offers more detailed insights for
modeling disease onsets, etiology, and other factors than what
current population health modeling approaches can achieve.
Eventually, we discuss the conditions and prerequisites that
need to be satisfied to adopt PDH and draw examples
of different geographic regions to highlight their current
readiness.
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PDH: A Research Agenda
PDH brings together diverse sources of digital health
information and uses it as input for population health
modeling and for informing health policy making. Naturally
integrating diverse information sources poses technological—
and even societal—challenges that must be addressed. We
next discuss key dimensions of PDH.
Availability and Management of Digital
Health Data
Personal health devices have long been envisioned as a
powerful technology for supporting health monitoring [7],
and the COVID-19 pandemic has further highlighted their
potential as a mechanism to alleviate pressures on public
health care delivery systems [11]. Relevant examples include
blood pressure monitors, continuous glucose measurement
devices, and smartwatches measuring physiological biomark-
ers, such as heart rate (HR), HR variability, blood oxy-
gen saturation, and body temperature. What makes data
from these devices particularly powerful is the diversity of
available devices with powerful outreach to all population
segments through smartphone apps and smart wearables on
youth and work population and at-home medical monitoring
devices [12]. At the same time, there are significant chal-
lenges in harnessing these data. First, EHRs have emerged
over a long period of time and have well-structured represen-
tations, whereas currently available digital health information
tends to follow proprietary formats and structures. This calls
for data structures and algorithms that can consolidate data
from different devices [13]. Second, digital health informa-
tion is sensitive and may be stored and used over a long
period of time, which requires combining privacy preserva-
tion techniques [14] with secure and tamper-free storage,
for example, by taking advantage of distributed ledgers
[15]. Finally, availability of digital health information is
intrinsically linked to the use of such devices, which is
governed by personal preferences, socioeconomic background
of individuals, and other factors. As a result, the availabil-
ity of specific types of information is biased toward certain
population segments and there is a need to understand biases
governing these divisions to ensure models developed from
these data that are generalizable.
Cooperation Between Private and Public
Sectors
The integration of data from personal health devices into
population health modeling necessitates the consent and
cooperation of the companies producing these commer-
cial products. Public-private partnerships (PPPs) present a
promising avenue for achieving this as they offer an ethical
and effective framework for integrating personal health
device data into population health initiatives. These partner-
ships can be successful, however, only if there are standar-
dized interfaces for integrating data from diverse personal
health devices. In addition, the partnerships need to be based
on binding and sufficiently long-term contracts to ensure the
sustained availability of data from personal health devices.

These contracts should outline clear guidelines for data
sharing, privacy protection, and ethical data usage, providing
a foundation for collaboration between commercial entities
and public health systems. There is also a need for cost
and profit-sharing models that incentivize the commercial
sector to make data available for population health modeling,
fostering a mutually beneficial framework for data sharing
and utilization.

Data Accuracy
Integrating data from personal devices with health care
services requires accurate and reliable data that can be used
to make sound policy decisions. Personal health devices,
including devices for at-home use, are well known to
be susceptible to errors unlike medical-grade devices and
equipment [16,17]. Machine learning helps compensate these
errors [18,19] and can even reach close to clinical accuracy
in some situations [18] but significant challenges remain
in ensuring their consistency (ie, robustness) and reliabil-
ity in a wide range of everyday contexts. For example, in
the context of HR monitoring, calibration techniques have
been shown to be generally effective during regular physi-
cal activity, such as walking or biking but less so in con-
texts that feature activities with irregular motion patterns
(eg, folding clothes). In addition, personal characteristics,
such as how the device is used, worn, or the wearer’s skin
complexion, can impact measurement accuracy [12,16,17].
Public health policies need to be based on accurate infor-
mation and hence there is a need to understand potential
errors and to have effective mechanisms to mitigate them.
This requires replicable protocols for evaluating personal
health devices for specific use cases. For example, studies
on in-home monitoring of elderly people should be assessed
with everyday activities they conduct at home as these can
cause motion artifacts that distort the signal [20], whereas
studies for using personal devices to screen heart conditions
(eg, atrial fibrillation using a smartwatch) should be based on
clinical criteria. While studies on understanding the perform-
ance of personal health devices are increasingly conducted,
they tend to rely on different protocols, use different devices,
have differing sample populations, and even reference devices
[21]. Moreover, these studies are often anchored at clinical
accuracy criteria rather than focusing on specific population
health modeling needs, which makes it difficult to aggre-
gate the devices into population health modeling processes.
Indeed, showing a 5% error in HR estimates for a specific
wearable device in walking and running does not provide
sufficient insight into whether the device can be used for
profiling or monitoring specific diseases. Replicable protocols
anchored at specific population health targets can help make
information more useful and easier to integrate.

Regulations and Quality Standards
Ensuring the accuracy and reliability of personal health data
is essential for informed decision-making in PDH. However,
existing regulatory processes designed for clinical purpo-
ses, such as Food and Drug Administration regulations for
medical devices, may not fully align with the characteristics
and usage of personal health devices for population health
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purposes. Therefore, there is a need to update regulatory
mechanisms to better accommodate personal health devices
and to ensure their effectiveness and safe and acceptable
use for population health. This may involve introducing
more lightweight regulatory alternatives that are specifically
tailored for collecting data for personal or population health
purposes [22]. Beyond regulation, there is also a need to
establish quality standards for data produced by personal
health devices. Indeed, rigorous clinical standards, while
essential, may not translate to the context of personal health
devices due to the inherent variability in data collection
procedures and usage contexts. This can be offset by deriving
localized and contextualized quality standards that consider
the specific contexts of use and the variability relative to
the intended application, ultimately ensuring the reliability
and validity of the data derived from personal health devices
[23]. Failure to provide better regulations and to address the
contextualization of data from personal health devices may
lead to decreased user trust [24] and limit the potential to
harness valuable data for population health.
Digital Biomarker Discoveries
While some diseases and conditions such as cardiovas-
cular diseases, diabetes, pulmonary diseases, and asthma
have well-established digital biomarkers used in specialized
personal health devices that can monitor their progression,
the search is on for the most suitable digital biomarkers
for many other diseases and conditions. Understanding the
potential of a specific sensor or combinations of sensors and
the information that can be gleaned from them in acting
as representative digital biomarkers for certain diseases and
conditions is currently shaping an exciting discovery pipeline.
Such discoveries may exploit repurposing of sensors available
in most smartphones, smartwatches, wearables, or at-home
IoT devices [25]. For example, microphones from personal
devices can sample audio clips to model the coughing
sound of respiratory diseases [26]. In fact, speech sens-
ing is currently being extensively researched as a promis-
ing source of digital biomarkers in multiple disease areas
including Alzheimer disease, Parkinson disease, frontotem-
poral dementia, depression, and schizophrenia [27]. Motion
sensors can also be used to detect early stages of Parkinson
disease [28] or to analyze sleep patterns [8]. Research and
advances in the digital biomarkers pipeline, through existing
or novel sensors, are critically important to enabling PDH.
Data and Service Trustworthiness
Digital population health requires that citizens trust the
devices they use and how their data are being handled if they
are to engage to guarantee that a critical mass of informa-
tion is available. This can happen only if sensitive data are
protected and there are no concerns about data misuse—a
common concern in the use of health data [29].

Federated learning is seen as a potential way to aggre-
gate EHRs [30] and could similarly be adopted for learning
insights from health IoT and wearable devices as long as the
accuracy of the data can be ensured. Yet, federated learning is
vulnerable to poisoning where some of the data used to train
the model or the model parameters are manipulated with the

aim of misleading the model [31]. AI or ML algorithms are
also vulnerable to model biases that may incorporate racial
or socioeconomic differences [32] rather than capture the
true causes of diseases. Population health and care delivery
services will also require trustworthiness in the opposite
direction if devices’ biomarker data are to be relied on and
included within or alongside EHRs. This will require the use
of verifiable digital identity for the users, for instance, using
the emergent W3C Decentralized Identifiers concept [33] or
implementing smart contracts between the concerned parties
[34].
AI Models and Data Sparsity
AI models are data-hungry, requiring vast amounts of data
and labeled examples to operate effectively and accurately.
Even at the population level, the available data tend to be
sparse and hence there is a risk of the resulting models being
unreliable.

Sparsity can also result in biases as the majority of the
data tend to come from specific areas, times-of-day, or
specific segments of the population. PDH modeling needs
to be aware of these risks and have mechanisms to minimize
their effects. For example, our previous work has shown that
data reconstruction techniques can be effective at overcoming
sparsity in EHRs [35,36] and similar techniques can be used
on other forms of digital health data. Another issue related
to AI modeling is the untapped opportunity of learning intra-
and interdisease correlations brought by the diversity of the
conditions and measurements contained in the collected data.
Indeed, as outlined, health IoT technology monitors a range
of different biometrics and there is a potential to combine
and take advantage of such diverse data for constructing
unprecedented, sophisticated PDH models.
Data Biases
Bias is pervasive in health care data and has far-reach-
ing implications for studies reliant on observational data,
including those on population health modeling. Biases within
EHRs often stem from socioeconomic or demographic
disparities, such as studies being confined to specific age
groups, genders, comorbidity-specific cohorts, or racially
skewed populations [13]. The transition to data from personal
health devices introduces further biases that are linked to
technology and connectivity availability, cost-related barriers
limiting access to specific devices or technology, and
spatiotemporal biases arising from varying usage patterns.
With PDH drawing on data from personal devices, there is a
tangible risk of excluding certain socioeconomic groups from
health studies. However, it should be noted that this issue
also impacts EHRs as there are notable racial and socioe-
conomic disparities in the use and accessibility of health
services. Addressing biases necessitates stringent reporting
guidelines during the profiling and modeling phase to
identify and rectify potential biases in modeling [37]. Robust
techniques are also required to analyze and establish causal
links between observations and population health outcomes
[38]. Bias may also be mitigated by harnessing explaina-
ble AI techniques as they enable researchers to scrutinize
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how specific background variables may influence analysis
outcomes [39].
Multitier Data Processing
Collecting and analyzing digital health information produce
vast amounts of measurements that need to be cleansed,
aggregated, and preanalyzed. Low-level data may also need
to be folded into digests to reduce data volume and facilitate
better use. There is also a need to analyze certain measure-
ments at different spatial and temporal resolutions to identify
disease prevalence, for example, to identify risk factors
in a specific district. However, the continuous transmis-
sion of data to remote servers—or the cloud—requires a
lot from both the network and the remote infrastructure,
besides posing privacy challenges and risks of unauthorized
data access. This demands elasticity from the public health
infrastructure to scale to increasing amounts of data volume
and velocity. Such elasticity may become cost-prohibitive
requiring intelligent use of edge computing [40]. Deploying
AI support on the network edge can alleviate the burden
and enable localized modeling that is tailored to specific
geographic areas (eg, neighborhoods). Unfortunately, edge
and fog solutions are neither scalable nor dense enough
to provide continuous support for intermediate data process-
ing. This requires multilayer architectures where each of the
layers supports and participates in the processing. Advances

in network connectivity, smart gateways, and cloud-fog-edge
architectures make it possible to optimize and reduce the
cost of moving and aggregating data, but this also requires
carefully planned deployments. For example, deploying edge
support at points-of-entry locations, such as malls, transpor-
tation stations, parks, or other similar locations that peo-
ple frequent, can offer a cost-effective way to connect the
majority of the population to the data processing infrastruc-
ture scalably (Figure 1). Developing suitable architectures
and identifying practically feasible ways to deploy them are
important challenges for ensuring large-scale feasibility of the
PDH vision.

Case Studies for PDH
Availability of Digital Health Data
Access to health data from health IoT devices and personal
wearables is a prerequisite for PDH. We first show how data
from health devices are increasing and can indeed signifi-
cantly increase the scale and coverage of population health
models. We use the Google Play Store Apps data set [41]
and demonstrate how the number of apps and users per app
have grown from 2010 to 2020. As shown in Figure 2A, the
release of new applications has increased by an average of
66.9 (34.1%) per year.

Figure 2. Number of smartphone apps released in the Health category between 2010 and 2020 (A) and number of app users (B).
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At the same time, the adoption of apps has been very diverse,
and the usage base tends to be highly fragmented. Indeed,
the vast majority of health apps have fewer than 1000 users

(39.1% [24.9%]), with only a small fraction of the apps
(39.1% [24.9%]) having more than 100,000 users (Figure
2B). What this means in practice is that there are significant
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opportunities to take advantage of digital health data, but
overall the user base tends to be fragmented and maximally
taking advantage of all data can prove challenging. At the
same time, a small number of apps garners a large user base
and thus integrating data from them would serve as a logical
starting point. This integration can harness either public
application programming interfaces offered by the companies
or, preferably, PPPs that set conditions and boundaries for
data use. Beyond data fragmentation, there are naturally other
challenges also in the use of the data. For example, all app
ecosystems are prone to churn with a wide range of factors
affecting the overall retention of apps [42].

The increased availability of digital health data alone is
not sufficient as the data need to be suitable for modeling.
Population health models commonly analyze records at a
fixed spatial resolution (such as a postcode or a grid) but
obtaining continuous measurements from personal health
devices from all of the areas is next to impossible. We use the
Carat [43] Top 1000 Users Long-Term App Usage Dataset
[44] to highlight how data from health apps vary across time
and depend on the app popularity. We focus specifically

on the situation prior to the pandemic as this gives a more
stable view of the app usage. Specifically, we analyze the
daily collection patterns in 2017 and 2018 of the top three
popular health apps used for tracking individual’s health in
different contexts: (1) Samsung Health, (2) Fitbit, and (3)
Sports Tracker Running Cycling.

Figure 3A shows that the usage patterns for the 3 apps
generally follow diurnal patterns, which means that nights
and mornings tend to have much lower amount of measure-
ments than afternoons. While this tends to be a generic
pattern for apps [45], naturally the usage patterns also
vary depending on app functionality and other factors. For
example, sleep-tracking apps naturally produce more data
during nights than physical activity trackers. There are also
some activity trackers that continuously collect measurements
from different sensors and this is also the reason for the low
variation in measurements for the Sports Tracker Running
Cycling app. In these cases, most of the produced data do
not contain any health-related data and hence there is a need
for analyzing and validating which of the measurements are
relevant for population health modeling purposes.

Figure 3. Temporal sparsity in Health apps (A). Data inaccuracy when measuring HR from different devices and body parts (B). HR: heart rate
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Data Inaccuracy
We next demonstrate potential utilization of digital biomarker
data and the effect that data sparsity and its accuracy have
on modeling PDH. Personal wellness and health devices do
not always meet clinical criteria for accuracy and thus the
measurements need to be validated before they are used. We
highlight this issue using HR measurements in the PPG-
DaLiA data set [46]. The data contain HR measurements
from a chest-worn device and a wrist-worn device to study
HR variations during daily life activities [47]. Personal HR
trackers are popular examples of devices producing digital
health information and they are well known to be subject to
inaccuracies [16].

Figure 3B shows the difference in HR measurements
for the 2 devices (wrist-worn smartwatch and chest strap
monitor) for 9 activities and 15 users. The HR variation
is highest in aerobic activities (stairs: 104, SD 19.1 bpm,
cycling: 112.4, SD 14.8 bpm, and walking: 93.8, SD 7.9 bpm)
compared with activities with little movement (sitting: 53.1,
SD 7.5 bpm, table soccer: 80.5, SD 8.6 bpm, driving: 78.7,
SD 9 bpm, lunch: 75, SD 8.1 bpm, and working: 73.7, SD
4 bpm). The mean absolute error between the HR measure-
ments collected at the chest and at the wrist is 7.7, SD 5.9
bpm, which is much worse than the reported accuracy of

the devices and highlights issues with measurement quality.
The discrepancy tends to be highest in activities where both
the body and the wrist are moving (eg, stairs, 29.7, SD 13.9
bpm) and low motion activities result in lowest errors (eg,
sitting, 2.6, SD 5.2 bpm). Integrating digital health informa-
tion thus needs to be carried out carefully as otherwise errors
in the measurements can result in misleading conclusions.
Machine learning techniques can help curb such inaccuracies.
Table 1 illustrates how even the simplest ML models can
significantly decrease the errors by learning how to calibrate
the sensors. The sole exception, in our example, is cycling
where all algorithms slightly increase the error as they fail to
capture the periodic nature of motion patterns. More complex
algorithms, such as deep learning [19], can further reduce HR
measurement errors, but they are similarly prone to overfit-
ting on specific types of patterns. Further research is certainly
needed to understand and mitigate different biomarker errors
and to integrate this information reliably into public health
models. At the same time, there is a need for regulations that
specify what level of accuracy is needed, and these should be
contextualized to consider how the data are being used. For
example, using HR data to study the prevalence of obesity
does not require the same accuracy as attempting to under-
stand the prevalence of arrhythmia or other health conditions.

Table 1. Error (mean absolute error) of different heart rate calibration models.
Status HRa at wrist Logistic regression Random forest Gradient boosting
Sitting 0.9 (0.9) 0.5 (0.8) 0.4 (0.7) 0.4 (0.5)
Stairs 34.9 (11.5) 10.2 (5.6) 12.7 (8.2) 10.4 (5.7)
Table soccer 17.9 (5.5) 4.2 (3.2) 3.3 (2.6) 3.0 (2.2)
Cycling 5.5 (9.6) 6.9 (6.2) 6.3 (8.1) 5.7 (6.5)
Driving 2.2 (1.9) 1.9 (1.5) 1.4 (1.2) 1.6 (1.2)
Lunch 2.5 (2.6) 2.4 (1.9) 1.9 (1.7) 1.9 (1.5)
Walking 0.7 (0.6) 0.7 (0.5) 0.5 (0.8) 0.7 (0.6)
Working 2.6 (1.9) 1.3 (1.3) 1.3 (1.2) 1.3 (1.1)
Overall 4.8 (9.2) 2.7 (3.6) 2.5 (4.3) 2.3 (3.4)

aHR: heart rate.

Spatiotemporal Sparsity
Finally, we show an application use case of how manage-
ment and multitier data processing of digital health data
can be used to reduce the sparsity of digital biomarker data
and improve performance in PDH modeling. Our previous
research has addressed spatiotemporal data sparsity in EHRs
and developed a methodology that is based on deep learning

and data reconstruction to mitigate the effects of sparsity
[35,36]. The approach, coined compressive population health
(CPH), uses intra- and interdisease correlations, convolutional
neural networks, and generative adversarial networks to infer
(recover) missing prevalence rate entries of different chronic
diseases from a sparse population health data set (Figure 4).
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Figure 4. Recovery of missing prevalence data of 2 diseases from the London population health data set. Original prevalence data (A) contain many
missing entries (blue areas in the left), which are augmented by exploiting spatial intradisease correlations (black arrows) and interdisease correlations
between different diseases (orange arrows). This allows to obtain prevalence rate estimates for all geographic areas (B). CNN: convolutional neural
network; GAN: generative adversarial network.
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Through experiments carried out on a decade of public health
data containing 17 chronic diseases and health conditions
across 500+ wards in London (the London population
health data set [48]), research has shown that CPH is
highly effective in modeling disease prevalence. The 2-stage
reconstruction and fusion framework of CPH outperformed
all baselines and achieved significantly improved accuracy
on estimating prevalence rates. The extent of improvements,
however, depends on the specific disease or health condi-
tion. For example, for obesity, CPH results in an error of
10.5%, an 8.5% improvement over the best baseline. For
hypertension, CPH error is 2.7% but the baseline reconstruc-
tion techniques also perform well and the CPH improve-
ment is only 5.1%. For diabetes, CPH achieves an error of
8.2%, outperforming the best baseline by 16.9%. In terms of
coverage, sampling just 11% of the entire region can result
in a lower than 15% reconstruction error for the missing
data entries, suggesting that reconstruction can also improve
the accuracy of the data. In contrast, other baseline methods
need to sample at least 57% of the region to satisfy the
same requirement. Overall, the results show that CPH can
save more than 90% of resources in data collection while
increasing the quality of data and the accuracy of estimates
derived from it. Surely, further work is needed to address
other factors beyond prevalence. Nevertheless, these results
demonstrate the potential digital population health can have
on significantly cutting cost of monitoring while improv-
ing coverage (and hence health equity) and data accuracy.
From an analytics standpoint, CPH offers increased flexibil-
ity compared with traditional spatial epidemiology modeling,
which is often limited to parametric-linear approaches and
bound to low-dimensional measurement sets.

Adopting PDH
The adoption of PDH is contingent not only on the iden-
tified challenges but also on the presence of a comprehen-
sive ecosystem and network to support its implementation.
The readiness of different cities, countries, or regions to

fully embrace PDH varies significantly and is influenced by
factors such as public willingness to share data, the availa-
bility of private-public partnerships, trust in the system, the
existence of legal frameworks for health data, technological
foundations, and the availability of health care providers and
institutions to benefit from digital population health.

Regions with established clinical research networks
exemplify ecosystems that can readily adopt digital pop-
ulation health, as they possess the necessary legislative
frameworks, data and computing frameworks, and connec-
tions between stakeholders. An illustrative example is
the OneFlorida+ Clinical Research Network [49], which
integrates a data trust that offers access to curated EHRs,
vital statistics, and Medicaid and Medicare claims. The data
representation follows a common model, specifically the
PCORnet Common Data Model [50], and adheres to Health
Insurance Portability and Accountability Act regulations
on health data privacy [51] providing interoperability and
legislative protection on privacy. The network has been
successfully leveraged to profile and analyze the prevalence
of health conditions and diseases in the state of Florida, with
examples including studies on hypertension [52] and adult
obesity [53].

Another example is the shared European Health Data
Space initiative across EU member countries that links
curated health data records across EU member countries and
aligns the data representation with data governance frame-
works such as the General Data Protection Regulation and the
EU Data Act [54]. These examples illustrate that regions with
established networks for health data usage generally offer a
strong starting point for adopting PDH, as they ensure the
necessary infrastructure for curating, storing, and represent-
ing that the data are available, and that this infrastructure
links with health care providers, patients, clinicians, and
researchers, while being supported by robust legal frame-
works. Smaller-scale examples include Estonia, which has
strong data protection laws, widespread public trust in digital
services, and a well-developed e-governance infrastructure
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[55], and Singapore, which has fostered PPPs in the health
care sector and focused on creating a robust computing
infrastructure [56].

While existing ecosystems provide a strong starting point
for adopting PDH, adoption is also possible without such
networks, provided that a sufficiently large percentage of
the population uses personal health devices and companies
consent to their data being used for health purposes, or
that suitable PPPs are established. Many developed countries
fall into this category, as they have widespread adoption of
personal health devices but limited access to health services,
let alone having unified data models and data governance
models. Thus, the adoption of PDH is not restricted to a
specific model or framework, but different models can be
followed depending on the structure of the regional health
care service networks.

While there are many possibilities to adopt PDH, there
are also negative scenarios where adoption may be hampered.
First, maintaining a sufficient level of trust among individ-
uals to share their data is crucial, and misuse of personal
data can erode this trust. Breaches of health care data have
become increasing common, which is degrading the user’s
willingness to share their personal health data [57]. Simi-
larly, inadequate standards for representing digital health data
and the evolving nature of digital health technology pose
challenges in integrating data from different providers. Many
regions still have inadequate standards for representing digital
health data and this can make it hard to integrate data from
different provides [23,58]. Regions with existing standards
are better positioned to harness digital data, but at the same
time digital health technology continues to evolve and new
devices and health indicators emerge regularly. Thus, even
if standards exist, they need to be updated frequently as
new tools and technologies are developed. Regulations and
legislative frameworks, while essential for ensuring data
safety, also create barriers [59]. Finally, inequity of health
access is another concern that can hamper adoption, as certain

population segments have unequal opportunities to access
digital health tools and technologies. For example, older
people and those from lower income brackets tend to use
these technologies fewer than other parts of the population
[60]. Thus, achieving equitable reach across all population
segments may require PDH to coexist with another approach
that reaches those segments that personal health devices fail
to reach.

Despite these challenges, the increasing use of digital
health technologies and the evolving societal attitudes toward
their adoption indicate a growing receptiveness to PDH.
As long as significant breaches of sensitive health data are
avoided, the trend toward adoption is likely to continue,
highlighting the inevitability of society becoming increasingly
amenable to embracing PDH.

Summary and Conclusion
We presented PDH as an emerging research domain that
harnesses digital information provided by wearables and
health IoT devices for population health modeling. We
highlighted key research challenges for PDH, relating to
the availability, readiness, and management of health data;
the inaccuracy inherent in these data and the spatiotemporal
sparsity of the data measurements; and the trustworthiness of
the overall ecosystem. PDH complements existing population
health modeling approaches by increasing the scale, coverage,
and power of the models to explain onset, causation, and
other factors about diseases and health conditions. Through
case studies, we demonstrated how PDH can indeed increase
the scale and accuracy of population health models. We also
demonstrated how ML and AI are essential for tackling issues
in data quality. Finally, we discussed the necessary conditions
for transitioning to PDH and how different regions can adopt
it. Our research takes the first steps toward establishing the
viability of a new approach for public health modeling and
demonstrating the role machine intelligence plays in it.
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