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Abstract

Background: Population viral load (VL), the most comprehensive measure of the HIV transmission potential, cannot be directly
measured due to lack of complete sampling of all people with HIV.

Objective: A given HIV clinic’s electronic health record (EHR), a biased sample of this population, may be used to attempt to
impute this measure.

Methods: We simulated a population of 10,000 individuals with VL calibrated to surveillance data with a geometric mean of
4449 copies/mL. We sampled 3 hypothetical EHRs from (A) the source population, (B) those diagnosed, and (C) those retained
in care. Our analysis imputed population VL from each EHR using sampling weights followed by Bayesian adjustment. These
methods were then tested using EHR data from an HIV clinic in Delaware.

Results: Following weighting, the estimates moved in the direction of the population value with correspondingly wider 95%
intervals as follows: clinic A: 4364 (95% interval 1963-11,132) copies/mL; clinic B: 4420 (95% interval 1913-10,199) copies/mL;
and clinic C: 242 (95% interval 113-563) copies/mL. Bayesian-adjusted weighting further improved the estimate.

Conclusions: These findings suggest that methodological adjustments are ineffective for estimating population VL from a single
clinic’s EHR without the resource-intensive elucidation of an informative prior.

(Online J Public Health Inform 2024;16:e58058) doi: 10.2196/58058
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Introduction

There has been increasing interest in using electronic health
record (EHR) data as part of public health surveillance efforts
[1]. In an interview conducted among local health departments,
Comer et al [2] reported 23 such uses, including incidence or
prevalence of infectious and chronic diseases, such as diabetes,
hepatitis B and C, asthma, and depression, and uptake of disease

prevention programs, including vaccination and HIV testing.
Uptake of HIV testing is especially relevant and timely given
the 2019 US Department of Health and Human Services’
“Ending the HIV Epidemic: A Plan for America” initiative [3].
The plan calls for a 75% reduction in the number of new HIV
diagnoses within 5 years and a 90% reduction within 10 years.

To realize this ambitious goal, health departments monitor data
on HIV in their jurisdictions. There are a variety of metrics for
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doing so, including incidence, prevalence, late diagnoses, and
viral load (VL), a marker for the success of HIV testing
programs and connection to care and treatment. Undetectable
VL is the desired outcome in the HIV care continuum because
an undetectable VL equates to zero transmission risk, the
foundation of treatment as prevention [4]. A hierarchy of
aggregated VL measures exist and relate to the natural sampling
process that occurs from the source population when individuals
are diagnosed (community VL), are connected to care (in-care
VL), and have VL measures obtained (monitored VL) [5]. The
broadest categorization, population VL, is the most
comprehensive measure of the HIV transmission potential.
However, population VL cannot be directly measured due to
lack of complete sampling of the population of people living
with HIV as well as lack of complete or recent VL data among
those diagnosed [5]. Despite its utility and appeal, the measure
has notable challenges, including population selection, varying
definitions and calculations, and complete and accurate
surveillance [6]. These issues may have led to the decline in its
use following its introduction in 2009. Nevertheless, population
VL—if quantifiable—is a useful latent measure of transmission
potential and quality of HIV care and treatment in a specific
geographic area. Even a biased measure can be useful if it can
be calibrated to a less biased or an unbiased measure. For
example, one contemporary paper using data from the 2010s
investigated community VL and HIV incidence in South
Carolina and found that community VL disparities mirrored
disparities in HIV access to care for nonprioritized groups
including women, rural populations, and heterosexual
transmission [7].

Absent complete (or a representative random) sampling of a
population of people living with HIV, one may turn to EHRs
from various clinics to estimate population VL. A given health
department might wish to know the distribution of VL among
people living with HIV in its jurisdiction but only have a single
HIV care program that serves the community. As such, the
ability to estimate population VL from a single EHR may be of
value. In fact, researchers have previously demonstrated how
EHR data can improve the accuracy of HIV surveillance
programs [8]. However, use of EHRs for these purposes faces
methodological challenges, including ambiguous catchment
[9]. A given EHR can be expected to over- or under-sample
with respect to characteristics of people living with HIV (eg,
health, income, race, age, distance to clinic). We sought to
investigate the feasibility of imputing population VL from a
single EHR and under what conditions this may be possible.

Methods

Creation of the Synthetic Data Set and Clinics
To establish the feasibility of recovering the true population
VL from a single clinic’s EHR, we would need both clinic-level
VL EHR data as well as the VL from the source population,
data which are difficult to obtain as this would require measuring
VL among those unaware of their HIV status as well as those
not engaged in care. In lieu of this, we created a hypothetical
synthetic source population: This population can be considered
a large urban area in the United States with a population size

of 1,000,000 people and 1% HIV seropositivity, or 10,000
people living with HIV. We defined 3 demographic strata for
the population, as follows: age: <35 years, 35-44 years, 45-54
years, >54 years; gender: male, female; race/ethnicity:
non-Hispanic White, non-Hispanic Black or African American,
Hispanic or Latino. These categories were not meant to be
inclusive of all risk groups but rather commonly reported groups
for calibrating VL.

The demography of people living with HIV was randomly
sampled from a uniform distribution with probabilities informed
from the Centers for Disease Control and Prevention (CDC)
2020 HIV Surveillance Report [10]. Specifically, approximately
75% of the population was set to male, and 25% was set to
female. Age distributions were as follows: 18% <35 years, 19%
35-44 years, 24% 45-54 years, and 39% >54 years.
Race/ethnicity distributions were as follows: 33% White, 45%
Black or African American, and 23% Hispanic or Latino. VL
was randomly sampled from a log-normal distribution with a
log10 geometric mean of 3.65 (4449 copies/mL) and a log10 SD
of 1.2. The mean was informed from the measured community
VL from the San Francisco, CA HIV/AIDS Case Surveillance
System for 2005-2008 [11], and the SD was informed from the
CDC’s guidance document on community VL [5]. VL was
adjusted jointly across the demographic strata by multiplying
the VL by a randomly sampled probability obtained from a
normal distribution with the following means and accompanying
SD of 10%: –1% male and +18% female; +21% <35 years,
–10% 35-44 years, –26% 45-54 years, and –26% >54 years;
–10% White, +13% Black or African American, and +15%
Hispanic or Latino. These adjustments were informed from
differences observed in VL in the San Francisco surveillance
data [11].

To simulate the HIV care continuum from this source
population, we set approximately 10% of the population as
unaware of their HIV status. This group was more likely to be
younger, male, and Black or African American based on a study
of concurrent HIV and AIDS diagnosis in San Francisco [12].
Among those aware of their status, we created an “in care”
group in which approximately 72% of those in care would be
virally suppressed (<200 copies/mL), mirroring the 2021 San
Francisco HIV epidemiology annual report [13], although we
stress that our primary intention is not to replicate San Francisco
surveillance data but rather create a hypothetical urban
population. Sampling the “in care” group in this manner resulted
in an average 20% of the aware group also being in care.

Finally, to isolate the effects of various sampling mechanisms,
we created 3 HIV clinics with differing catchments. Clinic A
was sampled directly from the source population, Clinic B was
sampled from those aware of their HIV status, and Clinic C was
sampled from those in care. Each clinic contained 250 active
patients oversampled by male sex, White race, and age ≥45
years. The demographic composition of each clinic was set to
reflect observed patterns of retention in HIV care [14] and to
yield an EHR in which the mean VL differed from the source
population. We created 1000 versions of each clinic to account
for random variability.
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Creation of the Catchment Sampling Weights and
Weighted Analysis
Let K be the size of the source population, V be the number of
people aware of their HIV status, N be the number of people in
care, and S be the number of patients in care at a clinic. We can
estimate the catchment sampling weight using equation 1:

W = 1 / Beta((S + 1), (N + 1 - S)) (1)

In this equation, N arises from Binomial(N/K, K), where N/K
is the prevalence of people living with HIV and in care in the
source population. Weights are calculated per the demographic
strata enumerated earlier that related to a clinic’s catchment (ie,
race, age, and gender) such that V, N, S, and W are all calculated
separately for each stratum. The final sample weight is obtained
for each person by multiplying the corresponding
stratum-specific weights.

To allow for the possibility of weight misspecification when
they are not estimated appropriately, for example due to an
ambiguous catchment, we transformed W as outlined in equation
2:

Pbiased = log(P/(1-P)) + b*log(VL) (2)

In this equation, P is the inverse of W, that is, the individual
selection probability of being in the clinic, and consequently,
the inverse of Pbiased is the misspecified (biased) weights. The
coefficient “b” is the bias factor and was set to 0.1, a
conservative starting point that would still meaningfully shift
the weights. Under equation 2, a positive bias factor
demonstrates the scenario whereby individuals with higher VLs
are less likely to be sampled in the clinic, but, unbeknownst to
the researchers, the catchment model does not identify them as
such. Consequently, this bias factor down-weighted their
contribution in the weighted analysis by a factor of 0.1, when
they should have been up-weighted. Larger bias factors would
create greater weight misspecification, albeit with the same
conclusions.

We simulated 1000 of the unbiased and biased weights per
participant, then calculated the population geometric mean (GM)
VL for each clinic, where GM=exp(mean(log10(VL))). We also
calculated the unweighted GM and took the root mean squared
error (RMSE) between the weighted and unweighted measures.
The final calculations are thus based on the 1000 weights for
each of the 1000 clinic As, 1000 clinic Bs, and 1000 clinic Cs.
Our target estimand was the median and 95% interval of each
clinic’s GM distribution.

Postweighting Bayesian Adjustment
Following the weighted analysis, we conducted a Bayesian
analysis with the expectation that this would further improve
our ability to impute the population VL from a given clinic.
This approach is analogous to that taken by others who treated
weighted observations as “data” that enter the likelihood part
of the Bayesian computation [15]. For this analysis, we assumed
the true mean and variance were unknown and specified a
Normal-Gamma conjugate prior, although, since our focus was
only on the posterior mean, the calculations became simplified.
The prior mean (µ0) was informed by the San Francisco

HIV/AIDS Case Surveillance System, namely log10 GM VL of
3.65. As a starting point for the prior sample size (n0), we took
the perspective of a clinic’s population’s VL measured at a
previous time point (ie, available before the observed VL data
used in the weighted analysis). For example, one might posit
that such data were collected immediately upon diagnosis as
opposed to routine monitoring during antiretroviral therapy.
Following our weighted analysis, these observed measurements

have a logarithmic mean of and effective sample size,
nw=ΣW for each of the 1000 clinic samples. The posterior
logarithmic mean of the population VL (μn) conditional on
posterior variance is specified in equation 3.

μn = ((n0×μ0) + nw× ) / (n0 + nw) (3)

To examine the influence of the prior sample size, we
operationalized n0 in 3 ways: 0.25×nw, 0.5×nw, and 2×nw.
Additionally, to reflect the earlier scenario of the prior data
collected upon diagnosis, we conducted a final analysis for
clinic C where µ0 was informed from clinic B’s weighted mean
and the more conservative n0=0.25*nw. As before, these
calculations were performed for each of the 1000 clinic weights
for each of the 1000 clinics.

Real-World Clinic Data Set
As an applied demonstration of our methods, we obtained the
most recently available VL on active patients retained in care
for HIV at the Holloway Community Program at ChristianaCare
(Wilmington, DE). Patients’ age, race, and gender were coded
using the same categories defined earlier for our synthetic
population. Denominators needed for the catchment model were
obtained from the US Census Bureau 2021 American
Community Survey [16] population sizes for Delaware (the
presumed catchment of the Holloway program) and the
Delaware Integrated HIV Prevention and Care Plan for
2022-2026 that includes statewide surveillance data as of 2019
[17]. Using the procedures outlined earlier, we estimated the
population VL from the clinic data; however, as we did not have
access to historic unbiased estimates of VL for this jurisdiction,
we used the prior as described in our synthetic analysis. To
further acknowledge uncertainty in the prior mean (µ0), we
conducted a sensitivity analysis with µ0 modified in 3 ways
(0.25×µ0, 0.5×µ0, and 2×µ0) and repeated the Bayesian
adjustment across the 3 prior sample sizes.

All analyses were performed in R version 3.6.3 (R Foundation
for Statistical Computing). Analytic codes are available for
download from [18]. HIV VL point estimates and 95% intervals
are presented on a linear scale in the main text and a logarithmic
scale in Multimedia Appendices 1-5.

Results

Synthetic Population and Clinics
Each clinic was approximately 93% male; 4% <35 years, 5%
35-44 years, 40% 45-54 years, and 51% >54 years; and 81%
White, 13% Black or African American, and 6% Hispanic or
Latino (Table 1).
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Table 1. Characteristics of the synthetic population and clinics as well as the real-world cohort from the Holloway Community Program at ChristianaCare
(Wilmington, DE).

Real-world EHRSynthetic EHRsa,bCharacteristic

Holloway (n=1807)Clinic Cf (n=250)Clinic Be (n=250)Clinic Ad (n=250)
Populationc

(n=10,000)

Age (years), n (%)

278 (15.4)10 (4)10 (4)12 (4.8)1817 (18.2)<35

299 (16.5)15 (6)12 (4.8)12 (4.8)1819 (18.2)35-44

332 (18.4)96 (38.4)98 (38.2)97 (38.8)2727 (27.3)45-54

898 (49.7)129 (51.6)130 (52)129 (51.6)3634 (36.3)>54

Gender, n (%)

558 (30.9)19 (7.6)17 (6.8)17 (6.8)2497 (25)Female

1249 (69.1)213 (92.4)233 (93.2)233 (93.2)7503 (75)Male

Race/ethnicity, n (%)

1128 (62.4)32.5 (13)27 (10.8)30 (12)4446 (44.5)Non-Hispanic Black or African
American

514 (28.4)200 (80)207 (82.8)205 (82)3332 (33.3)Non-Hispanic White

165 (9.1)18 (7.2)15 (6)15 (6)2220 (22.2)Hispanic or Latino

41173310831473996Viral load (copies/mL), geometric mean

1.612.243.493.503.60Viral load, log10 geometric mean

aEHR: electronic health record.
bThe 3 synthetic clinic electronic health records (n=250 per clinic) were sampled from a source population of people living with HIV (n=10,000) and
were oversampled by male sex, White race, and age ≥45 years.
cSynthetic population results given as the median values from 1000 hypothetical clinics.
dSampled directly from the source population.
eSampled from a subset of the source population based on diagnosed HIV.
fSampled from a subset of the source population based on retention in care.

Figure 1 contrasts the observed, weighted, and Bayesian adjusted
VLs comparing the clinics to the population (see Multimedia
Appendix 1 for logarithmic results). Across the 1000
simulations, the median GM population VL was 3996 (95%
interval 3780-4214) copies/mL. For each clinic A, B, and C,
the median GM VL point estimates and 95% intervals were
3147 (95% interval 2294-4301), 3108 (95% interval 2216-4383),
and 173 (95% interval 123-240) copies/mL, respectively.
Following weighting, the estimates moved in the direction of
the population value with correspondingly wider 95% intervals
as follows: clinic A: 4364 (95% interval 1963-11,132)
copies/mL; clinic B: 4420 (95% interval 1913-10,199)
copies/mL; clinic C: 242 (95% interval 113-563) copies/mL.

Bayesian adjustment resulted in a shrinking of intervals,
depending on the prior sample size, where the large sample size
resulted in tighter intervals, and clinic C had a notable shift in
point estimates toward the population mean. With a 25% of the
clinic prior sample size, the posterior estimates were 433 (95%
interval 236-851) copies/mL; with a 50% of the clinic prior
sample size, the posterior estimates were 639 (95% interval
384-1120) copies/mL; and with a 200% of the clinic prior
sample size, the posterior estimates were 1685 (95% interval
1307-2231) copies/mL. When using the weighted clinic B
estimates to inform the prior for clinic C, we also noted an
improvement in estimating the population mean, with posterior
estimates of 432 (95% interval 230-889) copies/mL.
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Figure 1. Comparison of the distribution of the geometric mean HIV viral load for 3 clinic electronic health records (n=250 per clinic) sampled from
a synthetic source population of people living with HIV (n=10,000), with results representing 1000 hypothetical clinicals each with 1000 sampling
weight adjustments based on sampling from the source population (A) directly, (B) based on diagnosed HIV, or (C) based on retention in care (all 3
oversampled by male sex, White race, age ≥45 years). Bayesian 1: prior sample size of 25% of the weighted clinic sample size; Bayesian 2: prior sample
size of 50% of the weighted clinic sample size; Bayesian 3: prior sample size of 200% of the weighted clinic sample size; Bayesian 4: prior mean
informed from weighted clinic B estimates.

Figure 2 depicts the averaged RMSE for each clinic for each
weighting strategy (see Multimedia Appendix 2 for logarithmic
results). RMSE was greatest in the purely weighted analyses,
with median errors and 95% intervals for each clinic as follows:
clinic A: 1174 (95% interval 288-7261) copies/mL; clinic B:
1265 (95% interval 261-6369) copies/mL; and clinic C: 3745
(3385-4018) copies/mL. RMSE was lowest in the Bayesian
analysis that followed weighting with the larger prior sample
size, as follows: clinic A: 490 (95% interval 92-2026)

copies/mL; clinic B: 528 (95% interval 96-1884) copies/mL;
and clinic C: 2319 (95% interval 1773-2747) copies/mL. Figure
3 shows the impact of the weight misspecifications (see
Multimedia Appendix 3 for logarithmic results). As expected,
the biased weight systematically down-weighted higher VL
individuals when they should have been up-weighted, as might
occur based on an inaccurate catchment model where individuals
with higher VLs were less likely to be sampled in the clinic.
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Figure 2. Comparison of the root mean squared error (RMSE) of the geometric mean HIV viral load for 3 clinic electronic health records (n=250 per
clinic) sampled from a synthetic source population of people living with HIV (n=10,000), with results representing 1000 hypothetical clinicals each
with 1000 sampling weight adjustments based on sampling from the source population (A) directly, (B) based on diagnosed HIV, or (C) based on
retention in care (all 3 oversampled by male sex, White race, age ≥45 years). Bayesian 1: prior sample size of 25% of the weighted clinic sample size;
Bayesian 2: prior sample size of 50% of the weighted clinic sample size; Bayesian 3: prior sample size of 200% of the weighted clinic sample size;
Bayesian 4: prior mean informed from weighted clinic B estimates.
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Figure 3. Comparison of weight misspecification in the weighted geometric mean HIV viral load for 3 clinic electronic health records (n=250 per
clinic) sampled from a synthetic source population of people living with HIV (n=10,000), with results representing 1000 hypothetical clinicals each
with 1000 sampling weight adjustments based on sampling from the source population (A) directly, (B) based on diagnosed HIV, or (C) based on
retention in care (all 3 oversampled by male sex, White race, age ≥45 years).

Holloway Community Program Clinic
The 2021 population in Delaware was 1,003,384. For each
demographic stratum, the populations had the following
characteristics: age (<35 years: 420,844; 35-44 years: 122,088;
45-54 years: 115,300; >54 years: 345,152), gender (male:
485,908; female: 517,476), and race/ethnicity (non-Hispanic
White: 595,212; non-Hispanic Black or African American:
205,217; Hispanic or Latino: 101,213; other: 101,742). As of
2019, there were an estimated 3841 people living with HIV;
2984 were in care, and 857 were not in care. For each
demographic stratum among those in care, the populations had
the following characteristics: age (<35 years: 394; 35-44 years:
432; 45-54 years: 703; >54 years: 1455), gender (male: 2125;
female: 859), and race/ethnicity (non-Hispanic White: 958;
non-Hispanic Black or African American: 1725; Hispanic or
Latino: 222; other: 79).

There were 1807 active patients in the Holloway Community
Program with a resulted VL test as of the date of EHR data

extraction. The GM VL of the clinic was 41, and the geometric
SD was 190,261 copies/mL; 1656 of the 1807 (91.6%) patients
were virally suppressed (<200 copies/mL). Additional
characteristics may be found in Table 1.

Figure 4 presents the inferred population VL measure from the
clinic’s EHR (see Multimedia Appendix 4 for logarithmic
results). The weighting-only adjustment had negligible impact
compared with the unweighted estimate, while the biased
weights shifted the estimates slightly lower to a median of 35
copies/mL. The biased weight systematically down-weighted
higher VL individuals when they should have been up-weighted,
as might occur based on an inaccurate catchment model where
individuals with higher VLs were less likely to be sampled in
the clinic. Meanwhile, the Bayesian adjustment moved the
weighted estimate from 40 copies/mL to a median of 103
copies/mL with the 25% prior sample size, to 193 copies/mL
with the 50% prior sample size, and to 926 copies/mL with the
200% prior sample size. Results were sensitive to the assumption
about the informative prior’s mean (Multimedia Appendix 5).
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Figure 4. Inferred population geometric mean HIV viral load for Delaware based on active patients retained in care at the Holloway Community
Program at ChristianaCare (Wilmington, DE), with results representing 1000 sampling weight adjustments. Bayesian 1: prior sample size of 25% of
the weighted clinic sample size; Bayesian 2: prior sample size of 50% of the weighted clinic sample size; Bayesian 3: prior sample size of 200% of the
weighted clinic sample size.

Discussion

Using a synthetic population, we observed that recovery of
population VL from a single center’s monitored VL was
hampered when a historic measurement or informed guess at
the prior population VL was unavailable. In other words, good
VL data are preferred to methodological adjustments of
incomplete data.

Community VL, calculated from individuals who have been
diagnosed with HIV, has been used to generalize risk of HIV
transmission and evaluate retention in care and viral suppression
[6]. However, as mentioned in the Introduction, this measure
has several shortcomings. First, it will almost always result in
underestimated VL, as individuals who are unaware of their
HIV status will likely have higher VLs. Relatedly, timing of
the individual VL measure may also impact the community
estimate, as VL will fluctuate over time (eg, acute vs chronic
infection). Second, there may be issues with defining the specific
geographic area of the community and whether this population
is “closed.” Although closed communities would allow for a
more accurate community VL measurement, the applicability
and feasibility are hindered in the real world by population
migration. Third, sampling bias may be present when there is
a high prevalence of undiagnosed people living with HIV [6].
In these situations, the use of the population VL may be more
appropriate for reflecting transmission potential should we be
able to impute data for those undiagnosed or not retained in

care. To address these limitations, alternate metrics have been
proposed, such as the prevalence of viremia based on viral
suppression [19]. As such, researchers have adopted alternative
community-level VL measures that reflect the prevalence of
HIV in the community as well as distinguishing between those
who are virally suppressed and those who have a high VL and
are more likely to contribute to community spread [6,19]. The
methods we have demonstrated can readily be adapted to other
HIV measures where a weighted mean may be desired, such as
CD4 cell counts among people living with HIV for a given
jurisdiction. Regardless of the metric used, there is still risk of
ecologic fallacy at the aggregate level wherein a higher
population VL may not correspond to higher individual
transmission risk when prophylaxis is common.

Others have acknowledged the important challenge of the use
of EHR data for population inference when health care–seeking
behavior and access to care impact representativeness.
EHR-based studies are susceptible to issues of confounding,
information bias, and selection bias [9]. Bower et al [20]
demonstrated how selection into an EHR is not random and
recommended techniques such as sampling (poststratification)
weights and propensity scoring and inverse probability
weighting (IPW) to adjust estimates, in their case, of
cardiovascular disease risk. Flood et al [21] used EHR data to
estimate childhood obesity and found that the application of
sampling weights to their data allowed estimates to be
comparable to a nationally representative survey. Goldstein et
al [22] used IPW to adjust for presumed selection bias in a
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single-center EHR-based study when exposure and outcome
relate to catchment. It is worth delineating how these 2
complementary strategies—sampling/poststratification
weighting versus propensity scoring/IPW—differ in EHR
research.

The IPW approach requires specification of a probability model
(ie, the propensity score) for selection into the EHR from the
source population, conditioned on measured characteristics
related to this process. However, this demands the EHR capture
relevant details on the catchment process, or those data can be
readily linked, and EHRs are well-known to lack data on
epidemiological determinants [23]. On the other hand, using a
sampling weight assumes we have access to the denominators
from which the EHR data are sampled. One such source of data
we have used are census estimates, which can be stratified by
factors relating to catchment and tuned to the local environment.
The challenge with this approach is that, in practice, we may
not know all the characteristics defining catchment process, the
census might not capture those characteristics, or there may be
ambiguous geography. Indeed, catchment is a multifactorial
and sometimes nebulous process related to health care
availability, accessibility, affordability, accommodation, and
acceptability [24]. One potential way to gain insight into
catchment is to compare EHR data with census data to see which
characteristics are over- or under-represented for a given
geographic area defined by the clinic. If the census lacks data
on catchment-relevant factors but the EHR captures these details
(eg, sexual orientation), this may favor the IPW approach.

Another important limitation of our approach was our
construction of the sampling weights. We assumed a simple
random sample within each catchment stratum to calculate the
sampling weights. In our synthetic population, this was known
with certainty, although we blinded ourselves to this oracle view
by not retaining the selection probabilities during the data
generation process but rather relying on our catchment model.
However, as exemplified in our biased weighted analysis and
the real-world clinic data set, the catchment stratum may be
uncertain and, in our case, presumably underestimated
population VL. Many extensions exist to improve weighting
approaches, such as raking, which we did not evaluate herein
[25]. We also observed a decrease in precision—widening of
intervals—when comparing the weighted versus unweighted
results. This has been termed the bias-variance tradeoff, where

improved accuracy may be accompanied by worsened precision
[26].

A particular strength to our approach is the straightforward
implementation and Bayesian adjustment that can be carried
out with minimal programming ability. The included source
code [18] can serve as a starting point. More complicated cluster
survey designs may also benefit from Bayesian methods [27,28].
Bayesian analysis requires careful deliberation over which priors
may be most appropriate. Informative priors are useful and
straightforward, but obtaining unbiased estimates of VL can be
prohibitively expensive for some jurisdictions, and measures
obtained in one jurisdiction may not be exchangeable with
another. Indeed, we observed that our real-world application
was sensitive to the choice of prior. Nonetheless, even a small
unbiased survey can dramatically reduce RMSE and thus may
be justified. This would have to be done only once to seed
Bayesian prospective surveillance of population VL. These
methods can be adapted to other aggregated measures of disease
prevalence, for both research and practice purposes, especially
if an historic prior estimate is available.

Health departments have expressed interest in using EHR data
for many community health measures that can help inform
resource allocation and public health decision-making in
different contexts. Comer et al [2] identified 23 of these;
hepatitis B and C infection was a high priority measure and one
in which previous surveys such as the National Health and
Nutrition Examination Survey [29,30] can serve as an
informative prior. If, for example, a focal outbreak of hepatitis
C is detected from an EHR, this could suggest targeted treatment
and prevention efforts to cure infection and reduce future
transmission.

In short, we observed that methodological adjustments were
ineffective to recover the true population VL in our data without
prior knowledge of what this value may be. Further validation
using real-world EHR data from diverse clinical settings is
needed to confirm this finding. Should such prior data be
available, then it may be possible to infer population
characteristics from a biased clinic sample in the EHR. Moving
forward, we encourage those with access to population-based
surveys of community health metrics—especially at subnational
levels—to continue to disseminate these data to enable
epidemiologic methods such as ours.
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Multimedia Appendix 1
Comparison of the distribution of the logarithmic geometric mean HIV viral load (VL) for three clinic electronic health records
(n=250 per clinic) sampled from a synthetic source population of people living with HIV (n=10,000). Clinic A was sampled
directly from the source population, whereas clinics B and C were sampled from a subset of the source population based on
diagnosed HIV (clinic B) or retention in care (clinic C). All synthetic clinics oversampled by male sex, White race, and 45 years
of age or older. Results represent 1,000 hypothetical clinics each with 1,000 sampling weight adjustments. 1 Prior sample size
of 25% of the weighted clinic sample size. 2 Prior sample size of 50% of the weighted clinic sample size. 3 Prior sample size of
200% of the weighted clinic sample size. 4 Prior mean informed from weighted clinic B estimates.
[PNG File , 189 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Comparison of the root mean squared error (RMSE) of the logarithmic geometric mean HIV viral load (VL) for three clinic
electronic health records (n=250 per clinic) sampled from a synthetic source population of people living with HIV (n=10,000).
Clinic A was sampled directly from the source population, whereas clinics B and C were sampled from a subset of the source
population based on diagnosed HIV (clinic B) or retention in care (clinic C). All synthetic clinics oversampled by male sex, White
race, and 45 years of age or older. Results represent 1,000 hypothetical clinics each with 1,000 sampling weight adjustments. 1
Prior sample size of 25% of the weighted clinic sample size. 2 Prior sample size of 50% of the weighted clinic sample size. 3
Prior sample size of 200% of the weighted clinic sample size. 4 Prior mean informed from weighted clinic B estimates.
[PNG File , 151 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Comparison of weight misspecification in the weighted logarithmic geometric mean HIV viral load (VL) for three clinic electronic
health records (n=250 per clinic) sampled from a synthetic source population of people living with HIV (n=10,000). Clinic A
was sampled directly from the source population, whereas clinics B and C were sampled from a subset of the source population
based on diagnosed HIV (clinic B) or retention in care (clinic C). All synthetic clinics oversampled by male sex, White race, and
45 years of age or older. Results represent 1,000 hypothetical clinics each with 1,000 sampling weight adjustments. The biased
weight systematically down-weighted higher VL individuals when they should have been up-weighted, as might occur based on
an inaccurate catchment model where individuals with higher VLs were less likely to be sampled in the clinic.
[PNG File , 147 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Inferred population geometric mean HIV viral load (VL) for Delaware based on active patients retained in care at the Holloway
Community Program at ChristianaCare (Wilmington, DE). Results represent 1,000 sampling weight adjustments. The biased
weight systematically down-weighted higher VL individuals when they should have been up-weighted, as might occur based on
an inaccurate catchment model where individuals with higher VLs were less likely to be sampled in the clinic. 1 Prior sample
size of 25% of the weighted clinic sample size. 2 Prior sample size of 50% of the weighted clinic sample size. 3 Prior sample
size of 200% of the weighted clinic sample size.
[PNG File , 110 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Sensitivity analysis of inferred population geometric mean HIV viral load (VL) for Delaware based on active patients retained
in care at the Holloway Community Program at ChristianaCare (Wilmington, DE). Results represent 1,000 Bayesian sampling
weight adjustments. Sensitivity analysis compared three alternate specifications of the prior mean for VL: 25%, 50%, and 200%
of the original specification (m0). Prior sample size was varied three ways: 25%, 50%, and 200% of the weighted clinic sample
size.
[PNG File , 118 KB-Multimedia Appendix 5]
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