
Original Paper

Deriving Treatment Decision Support From Dutch Electronic Health
Records by Exploring the Applicability of a Precision Cohort–Based
Procedure for Patients With Type 2 Diabetes Mellitus: Precision
Cohort Study

Xavier Pinho1, MSc; Willemijn Meijer2, PhD; Albert de Graaf1, PhD
1Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
2Nivel, Nederlands Instituut voor Onderzoek van de Gezondheidszorg, Utrecht, Netherlands

Corresponding Author:
Xavier Pinho, MSc
Netherlands Organisation for Applied Scientific Research (TNO)
Princetonlaan 6
Utrecht, 3584CB
Netherlands
Phone: 31 88 866 42 56
Email: xavier.sacastropinho@tno.nl

Abstract

Background: The rapidly increasing availability of medical data in electronic health records (EHRs) may contribute to the
concept of learning health systems, allowing for better personalized care. Type 2 diabetes mellitus was chosen as the use case in
this study.

Objective: This study aims to explore the applicability of a recently developed patient similarity–based analytics approach
based on EHRs as a candidate data analytical decision support tool.

Methods: A previously published precision cohort analytics workflow was adapted for the Dutch primary care setting using
EHR data from the Nivel Primary Care Database. The workflow consisted of extracting patient data from the Nivel Primary Care
Database to retrospectively generate decision points for treatment change, training a similarity model, generating a precision
cohort of the most similar patients, and analyzing treatment options. This analysis showed the treatment options that led to a
better outcome for the precision cohort in terms of clinical readouts for glycemic control.

Results: Data from 11,490 registered patients diagnosed with type 2 diabetes mellitus were extracted from the database.
Treatment-specific filter cohorts of patient groups were generated, and the effect of past treatment choices in these cohorts was
assessed separately for glycated hemoglobin and fasting glucose as clinical outcome variables. Precision cohorts were generated
for several individual patients from the filter cohorts. Treatment options and outcome analyses were technically well feasible but
in general had a lack of statistical power to demonstrate statistical significance for treatment options with better outcomes.

Conclusions: The precision cohort analytics workflow was successfully adapted for the Dutch primary care setting, proving its
potential for use as a learning health system component. Although the approach proved technically well feasible, data size
limitations need to be overcome before application for clinical decision support becomes realistically possible.

(Online J Public Health Inform 2024;16:e51092) doi: 10.2196/51092
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Introduction

The concept of learning health systems (LHSs) is an approach
to health care that emphasizes continuous learning and
improvement through the use of data and analytics [1]. Realizing

that the US health care system was continuing to fall far short
of its potential of delivering the best care at a lower cost, LHS
was introduced in 2012 by the Institute of Medicine Committee
on the Learning Health Care System in America as a “vision of
what is possible if the nation applies the resources and tools at
hand by marshaling science, information technology, incentives,
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and care culture to transform the effectiveness and efficiency
of care - to produce high-quality health care that continuously
learns to be better.” in their report Best Care at Lower Cost:
The Path to Continuously Learning Health Care in America
[2]. The underlying concept of the LHS is to harness the power
of data and analytics to learn from every patient and feed the
knowledge of what works best back to clinicians, public health
professionals, patients, and other stakeholders to create rapid
cycles of continuous improvement, which should allow to derive
full benefits from leveraging data, systems, and human
interconnectedness on an ever-increasing scale as is also seen
in other sectors of the economy [3].

To help in deriving recommendations for implementation and
evaluation criteria, LHSs have been conceptualized in
frameworks from various perspectives, for example, impact on
quality of health care [4], health care system evolution [5], and
value creation [6].

The implementation of an LHS in practice requires the transition
of a complex system of multiple stakeholders, processes, and
technical (information) systems, irrespective of scale: local,
regional, national, or international [7]. McDonald et al [8]
recently identified the following as key enablers and actions
required to enact LHSs: promotion of patient engagement,
ensuring availability and access to data that are fit for purpose,
keeping a focus on generating and implementing knowledge,
creating organizational readiness, and stimulation of learning
systems at different scales.

The diversity of factors identified illustrates the broadness of
scope needed in assessing progress in the relatively novel field
of LHSs. To date, very few reviews on the subject exist.
Somerville et al [9] in a systematic review identified key
implementation strategies, potential outcome measures, and
components of functioning LHSs but stressed that further
research is needed to better understand the impact of LHSs on
patient, provider, and population outcomes and health system
costs.

As is evident from this short overview of literature on LHSs,
the use of data to create knowledge is one aspect of LHSs;
however, it is a central one. Focusing specifically on the impact
of the use of electronic health records (EHRs) on delivery or
outcomes of health care, only 5 (12%) out of 43 eligible studies
in a single available review study were found to document a
medium-to-high level of evidence for impact [10]. This
observation underlines the need for ongoing efforts to implement
and evaluate the incorporation of EHR data analytics–driven
knowledge generation in LHSs.

EHRs are electronic systems used to collect and store medical
information of patients longitudinally over time and to collect
and store information relevant to managing clinical workflows.
As such, EHR data can be of a diverse nature. These data can
be used for evaluation in various ways to extract knowledge
[11]. Although traditionally done via statistical analyses, recent
advances in machine learning techniques and applications have
allowed the development and deployment of integrative
algorithms that relate health care outcomes to multiple diverse
sources of information present in EHRs. These algorithms can
analyze large volumes of data to identify patterns and

correlations and perform predictions. Approaches based on
patient similarity are a typical recent example of this. A patient
similarity approach tries to derive knowledge that is relevant
to a given patient of interest who is presenting to the health care
professional by analyzing information that is pertinent to
clinically similar patients identified by a machine learning
algorithm.

This study focuses on knowledge generation from EHRs in the
Dutch primary health care setting based on a patient similarity
approach. From a data analytics perspective, it seems appropriate
to start exploring such an approach for a disease with substantial
prevalence and incidence, that is, large volumes of data present
in EHRs.

In 2013, approximately half of the Dutch population reported
having at least 1 chronic disorder. One of the most common
chronic disorders with a high disease burden is diabetes mellitus
(DM). In 2021, approximately 4.9% of the Dutch population
reported to have diabetes, of whom 90% (4.2%) had type 2 DM
(T2DM) and the remaining had type 1 DM [12]. Therefore,
T2DM was used as an example disease to explore the feasibility
of an LHS approach in the Dutch primary care setting from a
data analytical viewpoint.

In T2DM, a diminished insulin response in combination with
insulin resistance results in hyperglycemia. Although T2DM is
more common in participants aged >45 years, the numbers are
increasing for younger individuals owing to a rise in obesity,
sedentary lifestyle, and the intake of energy-dense diets [13].
Diabetes can be diagnosed and glycemic control can be
monitored by measuring the glycated hemoglobin (HbA1c)
levels or measuring the plasma glucose concentration. Diagnosis
thresholds for HbA1c and plasma glucose concentration are
>7% (53 mmol/mol) and >126 mg/dL (7 mmol/L), respectively
[14]. Testing for HbA1c is convenient, fast, and standardized,
but it is more costly and comes with a lower sensitivity than
testing for plasma glucose. As a result, it has become a standard
practice to use more frequent glucose measurements for regular
monitoring and HbA1c measurements only at longer intervals
or in special cases to assess the disease state and judge the
necessity for treatment change. The initial steps in treating and
managing T2DM involve lifestyle modifications, such as
adopting a healthy diet, engaging in regular exercise, and
quitting smoking. In the second step, when lifestyle
modifications fail to achieve an adequate glycemic level, an
antidiabetic medication is administered following national care
standards. In the Netherlands, the first line of medication is
metformin for non–high-risk patients and sodium-glucose
transport protein 2 (SGLT-2) inhibitors for high-risk patients.
There are various follow-up therapies, such as sulfonylureas,
dipeptidyl peptidase 4 inhibitors, glucagon-like peptide-1
receptor agonists, SGLT-2 inhibitors, α-glucosidase inhibitors,
and insulin [15].

In the Netherlands, general practitioners (GPs) are often the
first point of contact for patients diagnosed with T2DM and act
as gatekeepers to secondary care. Therefore, they play an
important role in the diagnosis and treatment of these patients.
To make treatment choices for individual patients with diabetes,
physicians consider treatment guidelines and their own
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knowledge and experience, also—implicitly or
explicitly—considering the patient’s perspective. Following the
LHS approach, the decision-making may be supported by the
on-demand availability of more objective information based on
larger groups of comparable patients, such that the physician
can see the actual data on improvements obtained after changing
treatment in similar patients. This requires integration and
sharing of data between physicians and health institutes.
However, in practice, in Dutch primary health care settings,
medical data sharing is still mostly limited to local or small
regional settings, thus hampering the implementation of an LHS.
The Netherlands Institute for Health Services Research (Nivel)
hosts the Nivel Primary Care Database (PCD), in which
routinely recorded data from EHRs from primary health care
providers are collected and used to monitor health and use of
health services in a representative sample of the Dutch
population. Therefore, the Nivel-PCD was an appropriate
database to study data analytical aspects for an LHS approach
for patients with T2DM in the Dutch primary care setting.

This study aims to explore the applicability of a recently
developed precision cohort analytics approach based on EHRs
[16] as a candidate data analytical decision support tool focusing
on data analytical aspects.

Methods

Overview
Our approach resides in patient matching and uses the precision
cohort analytics methods developed by Ng et al [16]. In brief,
there are different studies focused on building and applying
matching methods. There is also evidence that patient
similarity–based modeling outperforms population-based
predictive methods [17]. Methods that can learn a
disease-specific similarity metric by developing a locally
supervised metric learning are very valuable to identify clinically
similar patients. Similarity-based modeling algorithms can make
use of different sources of data formats: textual data, numerical
measurements, recorded signals, images, and vital signs. The
algorithms used commonly are neighborhood-based algorithms,
distance-based similarity metrics, correlation-based similarity
metrics, cosine-similarity metrics, and cluster-based algorithms
[17]. A clinical decision support (CDS) system that is intended
to improve health care by improving medical decisions with
clinical knowledge, patient information, and other health
information intelligently filtered or presented at appropriate
times [18] can for example include the following:

1. Mapping of clinical data from a patient to a specific point
in a clinical pathway to advise treatment

2. Prediction of an individual’s responsiveness to different
treatments based on the respective gene expression profiles

3. Identifying a patient as a candidate for a specific treatment
based on a set of clinical characteristics with an associated
desired treatment

4. Generating a patient trajectory graph from clinical data,
capturing conditions, outcomes, interventions, and
suggestions from medical guidelines at different patient
group levels

The precision cohort treatment options approach used in this
work is based on the abovementioned CDS approaches with
the following adjustments:

1. Identification and extraction of relevant clinical treatment
decision points (DPs) from the longitudinal patient data to
use as events of interest for modeling and analysis

2. Selection and generation of features to determine patient
similarity from different sources of information, such as
guidelines, clinical measurements, prescriptions,
consultations, and comorbidities

3. For a given patient of interest, creation of a precision cohort
of patient events that are similar to the given clinical state

4. Demonstration of the available treatment options and
statistics based on a retrospective analysis of the generated
precision cohort

When a new patient presents with a need for a treatment
decision, the approach can be used to create a precision cohort
of the most clinically similar participants in the database and
provide statistics on the past outcomes of different treatment
decisions taken for these patients. This information can be used
to support the health professional in their treatment choice. In
this study, the published precision cohort analytics approach
was adapted to the guidelines and EHR characteristics of the
Dutch care setting. Results are compared with those of Ng et
al [16], and their relevance for the Dutch setting is discussed.
The outcomes may provide a further stimulus to ongoing
initiatives to establish primary care medical data sharing at the
national level in the Netherlands.

The major steps of this workflow are (1) EHR data extraction
and preprocessing, (2) DPs identification and extraction (3),
patient similarity model training, (4) precision cohort
identification, and (5) treatment options and outcomes analysis.

EHR Data Extraction and Preprocessing
The data were extracted from the Nivel-PCD [19]. Using an
algorithm developed in prior research within Nivel-PCD [20],
a total of 11,490 registered patients were identified as diagnosed
with T2DM between 2012 and 2014, having at least 6 months
of prior history in the database. The follow-up period was
limited to a period of 5 years. Patients with incomplete data in
this 5-year period were also included. The identification of
patients with morbidities was done using an algorithm developed
by Nielen et al [21] to construct episodes of illness based on
routinely recorded EHRs. For the data extraction, only GP
practices that permitted to use the data for scientific research
were selected. Patient ID and GP practice ID are unique for
these data and cannot be linked to other data sets to reduce the
risk of tracking individual patients. For the selected 11,490
patients with T2DM, several tables were provided containing
clinical information on 625,641 prescriptions (date, International
Classification of Primary Care [ICPC] code, and ICPC
description); 402,602 consultations (date and [Dutch] CTG
code); 3,360,555 measurements (date, [Dutch GP association]
Netherlands Huisartsen Genootschap code, and result or value);
and 228,810 comorbidities (ICPC code and start and end date
[based on the episodes of illness construct mentioned above]
and type of comorbidity episode: 4 weeks, 8 weeks, 16 weeks,
long-lasting, or chronic [21]).
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To allow for a more explicit interpretation and analysis of the
data, all clinical codes were replaced by the respective

descriptions (Textbox 1), and dates were rewritten to a standard
format, across all the tables.

Textbox 1. List of clinical codes and source of descriptions used.

Clinical measurement

• Netherlands Huisartsen Genootschap [22]

Prescription

• Anatomical Therapeutic Chemical Classification System [23]

Comorbidity code type

• International Classification of Primary Care (International Classification of Primary Care codes were processed using a table provided by Nivel)

Consultation code type

• CTG [24]

Decision Points

Identification and Extraction
From the several tables, points in time were extracted to serve
as events of interest for the analysis and the modeling processes.
These points are named DPs, and they are defined as points in
time from the longitudinal data, of each patient, after the
diagnosis date, where the disease is considered as being not
under control either because HbA1c>7% or fasting glucose>7
mmol/L. These DPs thus represent opportunities to initiate a
change in the treatment plan. This point must have another
matching HbA1c or fasting glucose test in the follow-up period
that classifies the outcome of the treatment decision, either as
not under control (an HbA1c test>7% or a fasting glucose test>7
mmol/L) or as under control (an HbA1c test<7% or a fasting
glucose test<7 mmol/L). Over time during longitudinal
follow-up, a patient can have multiple DPs as long as the
abovementioned criteria are fulfilled. A DP is composed of the
following:

1. An index date:
• Date of an HbA1c or fasting glucose test that indicates

a disease-uncontrolled situation along with the new
treatment decision taken at this point.

2. A baseline period preceding the DP index date that
represents the disease condition and the active treatment
status, featuring the following:

• The treatment that was in effect
• The applicable clinical guidelines
• Data characterizing the condition of the patient
• All available clinical history until the DP index date.

In case of multiple information available for the same
field, the most recent was taken.

3. An observation period that follows the DP date, featuring
the following:
• The new treatment
• The treatment outcome: either disease controlled or

disease uncontrolled, during a period of 90 to 365 days
after the index date

Target Outcome Variables
As described in the Introduction section, alternatively to using
HbA1c International Federation of Clinical Chemistry and
Laboratory Medicine as a target outcome variable, in this study,
we also used fasting glucose, venous (laboratory) as a target
outcome variable following the same procedure to extract DPs,
but with a threshold of 7 mmol/L (Table 1). As mentioned in
the Introduction section, these 2 clinical measurements are the
most widely used tests for diagnosing T2DM. Although we
have no information for both these metrics for all the patients,
having 2 possible outcome judgment options allowed us to make
wider use of the Nivel-PCD data available for each participant.

Table 1. Percentage of patients with measurements and those without and total number of decision points (DPs) that are controlled and uncontrolled
for both glycated hemoglobin (HbA1c) and fasting glucose as target outcome variables (n=11,490).

Target outcome variable

Fasting glucoseHbA1c

10,824 (94.2)10,375 (90.3)Patients with measurements, n (%)

Number of DPs with outcomes

8,5229,683Controlled

32,4927,645Uncontrolled

666 (5.8)1115 (9.7)Patients without any measurements, n (%)
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Treatments Considered
Many different prescriptions occur in the Nivel-PCD data set.
To reduce the complexity of the analysis, we considered only
medication-based treatments that specifically targeted T2DM
(pharmacologic treatments), and we merged 3 different forms
of healthy lifestyle advice encountered in the records (ie, “follow
dietary advice,” “advice healthy food given,” and “advice
physical activity given”) into a single nonpharmacological
treatment, henceforth called “healthy lifestyle.” To select
medications specifically targeting T2DM, treatment options
present in the Nivel-PCD were compared against the
Pharmaceutical Compass [25], containing independent
pharmaceutical information for medical professionals, published
by the Dutch National Healthcare Institute. Textbox 2 shows
the resulting list of individual medications targeting DM that
were considered in this study. Treatment options that combine

multiple medications were also considered, for example,
metformin and gliclazide (denoted as metformin_gliclazide).

As the dosage information was not available in the data sample
used for this study, changes in drug dose were not captured and
were interpreted as “no change” treatments.

For each DP, we assigned an active treatment (baseline period)
and a new treatment (observation period). For assessing the
active treatment of each DP, the medical history of the patient’s
measurements was queried, and we applied the following
reasoning: if neither pharmacologic nor lifestyle advice was
found, then the DP was given a “no treatment” type of active
treatment; if both pharmacologic and nonpharmacologic
treatments were available, the 2 were merged (eg,
metformin+healthy lifestyle). For assessing the new treatment,
the same reasoning was applied; however, if the new treatment
was the same as the active treatment, it was denoted as “no
change.”

Textbox 2. List of medications targeting type 2 diabetes mellitus considered in this study.

Treatment options

• Metformin

• Sitagliptin

• Insulin aspart

• Insulin degludec

• Insulin detemir

• Insulin glargine

• Insulin (human)

• Repaglinide

• Glimepiride

• Tolbutamide

• Gliclazide

Guidelines
Treatment decisions were made by the physicians based on
clinical guidelines together with their personal past experience
and considering the history and condition of the patient. The
aim of using the guidelines is to improve the appropriateness
of medical practice by leading to a better patient outcome while
reducing costs, to aid authorities in deciding on the approval of
drugs and devices, and to identify areas that need further
research [26]. The guidelines for T2DM, published by the Dutch
College of General Practitioners, including recommendations
for the diagnosis, treatment, and management of patients, were
incorporated in this study [27]. The relevant criteria for this
study were derived from the guidelines to recommend
medications and confirmed in a discussion with a GP:

1. Aged >70 years
2. Disease duration >10 years
3. BMI <25 kg/m2

Patient Condition
The clinical condition of patients was assessed using clinical
measurements (which included data on, eg, BMI, diastolic blood
pressure, and low-density lipoprotein), comorbidities, and
consultation codes (Textbox 1). In addition, 2 patient condition
criteria (mobility and mental state) were added based on the
discussion with a GP, who emphasized that these are crucial
aspects to consider when deciding which treatment is most
appropriate.

Patients with mobility limitations are unlikely to perform
physical exercise; therefore, even adhering to a restrictive
healthy diet may not sufficiently control diabetes, necessitating
medication sooner compared to patients without impaired
mobility.

To assess the mobility state of the patient, we looked at
comorbidities and measurements that indicated any possible
obstacle to the ability to move. The list of comorbidities and
measurements considered is represented in Table 2. We
discriminated between the chronic and temporary duration of
each comorbidity as used in the episodes of illness construct
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[21]. It has to be emphasized that the operationalization of
reduced patient mobility as evident from Table 2 is a highly
subjective choice made by the authors based on their intuitive
understanding. It serves only for initial exploration of the
feasibility of introducing additional GP considerations beyond
the standard clinical guidelines.

Similarly, the mental state of the patient is also very important
when deciding the appropriate treatment option. Patients who

are going through events that alter their emotional state,
affecting their concentration, positiveness, or willingness to
adhere to treatment, may need a stricter treatment regime.

To assess the emotional state of the patient, we made an equally
subjective choice of the different comorbidities that might be
affecting their emotional state (Table 3).

Table 2. List of comorbidity and measurement types considered to assess the mobility state of patients. The upper part of the table shows the comorbidity
International Classification of Primary Care (ICPC) code, description, and type of duration. At the bottom, it shows additional variables that were
considered relevant to reflect mobility impairments, that is, the measurement type, Netherlands Huisartsen Genootschap (NHG) code description, and
the duration.

DurationCode descriptionCode

ICPC

TemporaryKnee symptoms or complaintsL15

ChronicOsteoporosisL95

ChronicOsteoarthritis of the kneeL90

ChronicVertigo or dizziness (excluding H82)N17

ChronicLeg or thigh symptoms or complaintsL14

ChronicStroke or cerebrovascular accidentK90

TemporaryFracture: tibia or fibulaL73

ChronicLow back symptoms or complaints without radiation (excluding L86)L03

ChronicOsteoarthritis of the hipL89

TemporaryFracture: otherL76

ChronicAsthmaR96

TemporarySprain or strain of other jointsL79

TemporaryFracture: hand or foot boneL74

ChronicAnkle symptoms or complaintsL16

ChronicChronic internal knee derangementL97

ChronicParalysis or weakness (excluding A04)N18

ChronicOsteoarthritis of the spineL84

TemporarySprain or strain of the ankleL77

TemporaryFracture: femurL75

TemporaryInfections musculoskeletal systemL70

TemporarySprain or strain of the kneeL78

NHG

ChronicLeft foot amputationK93

ChronicRight foot amputationK94
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Table 3. List of comorbidity types considered to assess the emotional state of patients. The table shows the comorbidity International Classification of
Primary Care (ICPC) code, description, and type of duration.

DurationDescriptionICPC code

TemporaryFeeling anxious, nervous, tense, or inadequateP01

TemporaryAcute stress or transient situational disturbanceP02

ChronicDisturbances of memory, concentration, or orientationP20

ChronicAnxiety disorder or anxiety stateP74

TemporaryIllness problem with a childZ18

ChronicLoss or death of a childZ19

TemporaryDisturbances of sleep or insomniaP06

TemporaryLoss or death of a partnerZ15

TemporaryAccident or injury NOSaA80

TemporaryFeeling depressedP03

ChronicOther mental or psychological disorderP99

ChronicSchizophreniaP72

ChronicDepressive disorderP76

ChronicAffective psychosisP73

TemporaryProblems resulting from assaults or harmful eventsZ25

TemporaryFeeling or behaving irritable or angryP04

ChronicSuicide attemptP77

ChronicOther or unspecified psychosesP98

ChronicDementia (including senile and Alzheimer)P70

aNOS: not otherwise specified.

Patient Similarity Modeling

Feature Selection
Patient similarity was evaluated firstly based on the
characteristics captured with the DP, that is, active treatment,
applicable guidelines, and patient condition (including clinical
history). In addition, to enrich the patient’s clinical information,
more features were engineered. For instance, a Boolean feature
named has_chronic_comorbidity was created to represent if the
patient had or did not have a chronic comorbidity recorded at
the time of interest in the medical history. In addition, the
number of prescriptions, number of clinical measurements,
number of consultations, and number of comorbidities from the
disease diagnosis date until the DP date were added as
candidates to the similarity features set.

As some algorithms cannot work directly with categorical data,
one-hot encoding was applied to the variable new_treatment,
converting this single column into N new columns, with N being
the total number of different treatments (including combinations)
observed in the data set. The same was done for the
active_treatment variable.

The final data frame of DPs extracted and processed from the
Nivel data set was composed of multiple feature types:
identifiers, dates, and categorical and numerical data.

The resulting DPs data frame had a large amount of missing
data. As a first selection step, only features that had at least 80%
nonmissing values were retained [28].

Thereafter, the remaining missing values were imputed using
the k-nearest neighbors (KNN)–based KNNImputer method
from the scikit-learn library [29], with the following parameters:
2 nearest neighbors and a uniform weighting of all points in the
neighborhood. The result of this step was a data frame of DPs
without any missing values.

A further selection of the most salient features associated with
disease control was done using the approach by Ng et al [16].
A total of 200 different L1-regularized logistic regression
models (also known as the least absolute shrinkage and selection
operator [LASSO] models) for predicting disease outcomes
were created. LASSO is a linear regression technique that
incorporates a penalty term to the sum of squared errors to shrink
the coefficients toward 0 and perform feature selection. The
penalty term is determined by the α parameter. Each model
used a randomly selected subset (75%) of the data. The features
selected by at least 150 of the 200 models were considered
stable, and the remaining features were discarded. To find the
best α parameter for the LASSO model, a grid search approach
was applied. Different values of α were tested (100, 20, 10, 2,
1.67, 1.43, 1.25, 1.11, and 1), and the value corresponding to
the highest F1-score was selected.
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As the 2 target outcome variables were unbalanced, we used
the F1 score [30], rather than accuracy, as a metric of prediction
performance.

It is important to note that 2 different data frames were built,
and separate similarity models were built, for the 2 outcome
variables HbA1c and fasting glucose. Each of the data frames
was split into 2 sets: a training set that was used to train the
patient similarity model and a scoring set used as a repository
of clinical events and to create multiple precision cohorts.

Similarity Model Training
The similarity model used the set of stable features obtained
from the previous steps to calculate patient similarity. This
model learns a T2DM distance measure that is a modified
version of the Mahalanobis distance (MD). The MD measures
the distance relative to a centroid or central point, in which all
means from all variables intersect; the larger the MD, the further
away from the centroid the data point is. The MD can also be
used to calculate the distance between 2 points, or in this case,
2 patients (xi and xj) using the covariance matrix. Here, a
modified version of the MD formula was used, with the
covariance matrix replaced by a weight matrix W, which is
learned from the training data.

(1)

The similarity model sets the weight matrix to maximize the
target class discriminability (disease control state) by adjusting
the weights of every feature. This was done by locally separating
points from different classes while keeping together points that
belong to the same class, using a large margin nearest neighbor
(LMNN) [31] machine learning algorithm.

The number of points to consider for the calculations is defined
by the number of neighbors parameter (K). Different values of
K were tested: 2, 3, 4, 5, 6, and 7.

To assess the effect of the LMNN algorithm, we compared the
performance of a KNN classification model [29] on the raw
data and the data transformed by the similarity model [32]. For
the KNN algorithm, a grid search approach was used to find
the best set of parameters:

1. Number of neighbors (N): (3, 4, 5, ..., or 30)
2. Weight function: uniform (all points in each neighborhood

weighted equally) or distance (closer neighbors of a query
point will have a greater influence than neighbors that are
further away).

The learned similarity weights for each variable for T2DM
separately for HbA1c and fasting glucose as target outcome
variables are shown in Multimedia Appendices 1 and 2.

Precision Cohort Construction
Precision cohort construction consists of selecting the most
clinically similar patient DPs based on the characteristics of the
patient of interest at the time of the consultation. The process
of generating precision cohorts needs to ensure that the baseline

confounders are adjusted so that the effect analysis is valid (ie,
a good covariate balance is achieved). The selection was done
in a 2-step procedure: a filtering step and a similarity rating.

To filter the patients who are more similar to the patient of
interest, filter variables were generated. These filter variables
were composed of guidelines plus the active treatment. For
instance, if the patient was aged 80 years and was currently
taking metformin, the filter variable was
age_above_70y+metformin. By using this filter variable, it was
ensured that only patients aged >70 years and who were taking
metformin were selected for the precision cohort. It is important
to mention that only data from the “baseline period” of the DP
were used for the filtering process, which means that the
treatment decision at the time of the DP (index date) was not
considered, as we want to analyze the entire pool of new
treatments in the precision cohort. Combining the set of
guidelines with the set of active treatments resulted in a very
large number of filter cohorts of widely varying sizes.
Considering that it is difficult to recommend treatment options
for patients with clinically odd profiles as this method requires
a large patient pool to recommend statistically significant
treatment options, we focused only on the most representative
cohorts, that is, those with >200 DPs.

For the second step (similarity rating), the similarity model
explained in the Similarity Modeling section was used to
calculate the similarity scores for the filtered DPs. The similarity
score is a distance metric; thus, smaller scores indicate a higher
similarity between a patient’s DP and the DP of the patient of
interest. The similarity score was converted to a normalized
distance using a minimum-maximum normalization method to
allow an easier interpretation of these scores.

Thereafter, the final precision cohort was generated by retaining
only the “most similar” patients. However, reducing the cohort
size may compromise the cofactor balance. Therefore, the
covariate balance of the precision cohort with varying sizes was
calculated to assess bias and matching validity by comparing
the “no treatment change” (new treatment is the same as the
active treatment) with the “treatment change” (new treatment
different from the active treatment) groups. Covariate balance
was calculated as the difference in the means of each covariate
between the 2 groups divided by the SD of the treated group
[33]. The closer this value was to 0, the better balance we had
between the groups.

To have a trade-off between the covariate balance value and
the number of DPs in the precision cohort, a normalized distance
value of 2 was defined as a cutoff. This value was chosen after
visual inspection of several covariate balance plots for different
precision cohorts. Some studies agreed that covariate balance
values <0.1 were satisfactory [34], although another study
suggested that a value of 0.25 was good enough [35]. With a
normalized distance cutoff value of 2, a covariate balance of
0.1 was achieved for most of the precision cohorts.

In summary, the precision cohort construction process involved
the following:

1. Filtering DPs with the same filter variables as the patient
of interest
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2. Calculating the similarity scores for the filtered DPs
3. Ranking DPs based on similarity scores (normalized

distance)
4. Retaining only the DPs with a normalized distance <2

Treatment Options and Outcomes Analysis
Treatment outcomes analyses were performed both from a global
perspective (ie, across all filter cohorts) and a personalized
perspective (ie, in the precision cohorts). The latter can be used
as a retrospective analysis to generate personalized treatment
options for a given patient of interest.

The set of DPs in the precision cohort was grouped by treatment
decision. For each of these treatment groups, we computed the
following:

1. The number of DPs
2. The percentage of DPs that have a controlled outcome
3. The difference in the respective outcome compared with

the “no treatment” change option
4. A statistical significance assessment using a Bonferroni

corrected χ2P value of 0.5 to adjust for multiple
comparisons

To better visualize the difference between the different
treatments for each precision cohort, the results were presented
in a Sankey diagram [36].

To reduce the number of treatment options with a low number
of DPs, we decided to only include those with at least 1% of
the total DPs in the precision cohort, with a minimum of 10
DPs. For instance, if the precision cohort had 2000 DPs, we
only included treatment options with at least 20 DPs.

Ethical Considerations
This study was approved according to the governance code of
Nivel-PCD (NZR-00320.048). The use of EHRs for research
purposes is allowed under certain conditions. When these
conditions are fulfilled, neither obtaining informed consent from
patients nor approval by a medical ethics committee are
obligatory for this type of observational study containing no
directly identifiable data (Art. 24 General Data Protection
Regulation Implementation Act jo art. 9.2 sub j General Data
Protection Regulation).

Results

Separate analyses were conducted for HbA1c and fasting
glucose as target outcome variables.

HbA1c Outcome Scenario

Decision Points
For the HbA1c scenario, we found 17,328 DPs across the
available longitudinal data from the 11,490 patients with T2DM.

Although seemingly large, this was still 10-fold lower compared
with previous work by Ng et al [16], who retrieved >171,000
DPs for 24,373 patients with T2DM from their data set, for
HbA1c as an outcome.

The processed HbA1c set was split into 5199 DPs for the
training set and 12,129 DPs for the scoring set. As the class

(disease control) was unbalanced, we had to ensure that we had
the same proportion of each class for both training and scoring
sets. For this case, of the 17,328 DPs, we had 9704 (56%)
uncontrolled DPs and 7624 (44%) controlled DPs. This same
proportion was maintained for the training set: there were 2905
uncontrolled DPs and 2294 controlled DPs in the training set
and 6793 uncontrolled DPs and 5336 controlled DPs in the
scoring set.

Patient Similarity Modeling
The methods of feature generation, missing data imputation,
and feature selection explained in the Methods section were
applied to this subset. The LASSO model α value used was
1.43, with an F1-score of 0.613.

The training set was used to construct a similarity model. The
optimal k value for the LMNN algorithm was 3. Both the raw
data and the data transformed with the similarity model were
subjected to the KNN algorithm. The most optimal parameter
combination for the KNN algorithm was determined to be N=6
neighbors and a weight function based on distance (data not
shown).

Next, the tuned version of the KNN algorithm was used to
evaluate the LMNN algorithm performance (refer to the Methods
section). The F1-score was 0.606 for raw data versus 0.613 for
transformed data. Thus, indeed, the LMNN algorithm resulted
in improved classification performance.

The learned similarity weights for each variable for HbA1c as
the target outcome variable are shown in Multimedia Appendix
1. These weights are disease specific for T2DM. A total of 26
features were retained for the similarity model. Interestingly,
there was rather limited variation in size: similarity weights
were all of comparable value (typically ranging between 0.4
and 0.6), except for features “#comorbidities” and “Systolic
BP.”

Precision Cohort Construction
The largest observed filter cohorts for HbA1c are shown in
Figure 1. These 25 cohorts covered approximately 75% of all
the DPs in the scoring set. Of these 25 cohorts, 20 (80%) had
>100 DPs. Only 10 cohorts had >200 DPs, considered
potentially useful for constructing precision cohorts. As
expected, the cohorts containing metformin were the largest
ones as it is the first line of medication for the treatment of
T2DM. The cohort “healthy lifestyle_metformin” was the largest
cohort for the HbA1c outcome scenario. The cohort
“all_guidelines_variables_false” also contained a large number
of DPs. In this cohort of patients, who were aged ≤70 years,
were not mobility or mentally impaired, and had a BMI of ≥25

kg/m2, no antidiabetic treatment (medication or healthy lifestyle
advice) was administered or the information was not registered.
Furthermore, of the 25 largest cohorts, 17 (68%) had “healthy
lifestyle,” 16 (64%) had “metformin,” 11 (44%) had “mobility
impaired,” 7 (28%) had “age_above_70y,” and 3 (12%) had
“mental impaired.” No other pharmacological treatments than
metformin and gliclazide (6 occurrences) were represented in
the 25 largest cohorts.
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Following the procedures explained in the Precision Cohort
Construction section, precision cohorts were generated for a
number of randomly chosen patients from various filter cohorts.
Figure 2 shows a covariate balance plot for 1 randomly chosen

patient in the metformin filter cohort as an example. As can be
appreciated from the figure, the best cofactor balance was
achieved for normalized distance 2.0.

Figure 1. The 25 largest cohorts for glycated hemoglobin (HbA1c) as a target outcome variable based on the filter variables. The blue bars represent
the number of decision points (DPs) on a logarithmic scale (left vertical axis), and the orange line shows the cumulative coverage on a linear percentage
scale (right vertical axis).

Figure 2. Illustration of the metformin precision cohort generation for the glycated hemoglobin (HbA1c) outcome target. The decision points (DPs)
in the subset were grouped by normalized distance (similarity score) to the patient of interest. The blue bars represent the number of DPs per bar or
grouped DPs (left vertical axis), and the red dotted line shows the cumulative covariate balance values for the different bars or grouped DPs (right
vertical axis).

Treatment Options and Outcomes Analysis
Table 4 shows the overall percent controlled of the 20 most
representative treatment options on a global scale, that is, across
the cohorts based on the filter variables. In >47% of cases, the
GP decided to continue the current treatment despite the HbA1c

levels being classified as uncontrolled. Despite no change, >44%
of patients had their HbA1c levels subsequently “controlled”
during the follow-up. Some alternatives, however, had much
better outcomes. For instance, the option of stopping the “no
treatment” option and starting taking metformin, that is, the first
line of medication treatment according to the guidelines, resulted
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in 57.6% (213/370) of DPs with HbA1c controlled, whereas
starting treatment with healthy lifestyle advice resulted in >64%
(63/98) controlled outcomes. Despite this difference, starting
treatment with metformin was chosen almost 4 times more often
than starting with healthy lifestyle treatment (370 vs 98 cases).
The combination of metformin and lifestyle advice was
beneficial over continuing each of these treatments as a single
treatment. This list is relevant for analyzing the global picture
of the available treatment options and the corresponding
outcomes. However, for individual patients, the treatment option
analysis might differ from the overall picture depending on the
precision cohort that more closely reflects the clinical scenario
for the particular patient. As an example of such a case-specific
analysis, Figure 3 uses a Sankey diagram to represent the
different treatment options for a given patient that belongs to
the cohort “Metformin.”

In Table 4, it can be noticed that adding healthy lifestyle advice
to the metformin prescription was a treatment option with a
statistically significant better-associated outcome (210/324,
64.8%), whereas changing from metformin to only healthy
lifestyle advice alone led to a worse disease outcome in the
precision cohort for this particular patient. Changing the
treatment to gliclazide or tolbutamide, or adding gliclazide to
metformin, also resulted in better outcomes; however, the
differences were not statistically significant because of the low
number of cases involved. We can also see that from the most
similar patients who kept taking only metformin, 45.69%
(605/1324) of the patients improved their disease condition. For
the remaining 54.31% (719/1324) of the patients, the outcome
was “uncontrolled” in the follow-up.

Table 4. The 20 largest observed global treatment option groups for glycated hemoglobin as the target outcome variable. The list shows the size of
each group and the associated percentage controlled during follow-up (n=12,129).

DPsa controlled, n (%)Frequency, n (%)Treatment option

2541 (44.21)5747 (47.38)No change

605 (45.69)1324 (10.92)Metformin_new+healthy lifestyle_metformin_stopb

170 (42.29)402 (3.31)Healthy lifestyle_new+healthy lifestyle_metformin_stopc

213 (57.57)370 (3.05)Metformin_new+no treatment_stopb

210 (64.81)324 (2.67)Healthy lifestyle_metformin_new+metformin_stopb

165 (67.07)246 (2.03)Healthy lifestyle_metformin_new+healthy lifestyle_stopb

138 (62.16)222 (1.83)Healthy lifestyle_metformin_new+no treatment_stopb

86 (39.63)217 (1.79)Gliclazide_healthy lifestyle_new+healthy lifestyle_metformin_STOPc

91 (53.85)169 (1.39)Metformin_new+healthy lifestyle_STOPb

65 (43.05)151 (1.24)Gliclazide_new+healthy lifestyle_metformin_stopc

80 (54.05)148 (1.22)Gliclazide_new+metformin_stopb

38 (25.85)147 (1.21)Gliclazide_metformin_new+gliclazide_healthy lifestyle_metformin_stopc

41 (33.33)123 (1.01)Gliclazide_new+gliclazide_healthy lifestyle_stopc

63 (64.29)98 (0.81)Healthy lifestyle_new+no treatment_stopb

32 (47.06)68 (0.56)Gliclazide_healthy lifestyle_metformin_new+healthy lifestyle_metformin_stopb

30 (50.85)59 (0.49)Gliclazide_metformin_new+metformin_stopc

16 (27.12)59 (0.49)Metformin_new+gliclazide_healthy lifestyle_stopb

17 (29.31)58 (0.48)Gliclazide_healthy lifestyle_new+gliclazide_healthy lifestyle_metformin_stopc

12 (20.69)58 (0.48)Healthy lifestyle_metformin_new+gliclazide_healthy lifestyle_stopc

21 (36.84)57 (0.47)Healthy lifestyle_metformin_new+gliclazide_healthy lifestyle_metformin_stopc

aDP: decision point.
bTreatment options with a controlled percentage higher than the “no change” treatment option.
cTreatment options with a lower percentage than the “no change” treatment option.
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Figure 3. Personalized treatment options observed in the precision cohort for a given patient belonging to the filter cohort “Metformin,” using glycated
hemoglobin (HbA1c) as the target outcome variable. The initial node, in black, includes all the DPs in the precision cohort for the particular patient of
interest. This patient has all the guidelines variables as “False” and is currently on a metformin prescription. Each pathway from the initial node is a
different treatment decision observed in the data. The thickness of the pathway is proportional to the number of DPs, and it is assigned with a label that
represents the new medication, and the percentage of DPs controlled in the follow-up. The “no change” treatment option is colored in gray, and it is
considered the baseline treatment option. The terminal nodes represent the outcome; the nodes in green denote the DPs that achieved control, whereas
those in red indicate the uncontrolled ones. Treatment options with better control than the baseline option are colored in green, whereas those with a
worse control are colored in red. Treatment options with a statistical significance are colored dark green or dark red.

Fasting Glucose Scenario

Decision Points
For the fasting glucose target outcome variable, we found 41,014
DPs across the available longitudinal data, that is, approximately
2.5 times more than for the HbA1c scenario.

The processed data set was split into 12,304 DPs for the training
set and 28,710 for the scoring set. Again, the disease control
target outcome variable was not balanced; thus, the proportions
were kept the same for both training and scoring sets. In this
case, we had 79% (32,401/41,014) uncontrolled DPs and 21%
(8613/41,014) controlled DPs. Accordingly, the same proportion
was kept for both the training and the testing sets.

Patient Similarity Modeling
Similarly to the HbA1c scenario, the methods of feature
generation, missing data imputation, and feature selection
explained in the Methods section were applied for the fasting
glucose scenario. The LASSO model α value used was 1.67,
with an F1-score of 0.691. The training set was used to train the
similarity model. The optimal k value for the LMNN algorithm
was 5. The KNN algorithm was applied to the raw data and the
transformed data. The best combination of parameters was N=6
and weight function=distance, that is, the same as that for the
HbA1c scenario (data not shown).

Next, the tuned version of the KNN algorithm was used to
evaluate the LMNN algorithm performance. The F1-score was
0.849 for raw data and 0.856 for transformed data. Thus, only
a small improvement in classification performance was achieved
by the LMNN algorithm.

The learned similarity weights for each variable for fasting
glucose as target outcome variable are shown in Multimedia
Appendix 2. These weights are disease specific for T2DM. A
total of 48 features were retained for the similarity model, 22
more than that for HbA1c. In total, 25 features were of the

“active _treatment_”-type, whereas for HbA1c, only 5 features
were of this type. This indicates that the active treatment was
much more predictive of disease outcome than in the HbA1c
scenario. With approximately half of weight values between
0.4 and 0.65, and half between 0.7 and 1.15, there was much
more variation in the size of weights compared with the HbA1c
scenario. Similar to the HbA1c scenario, the feature “Systolic
BP” had a low weight, probably because it had little
discriminating power.

Precision Cohort Construction
In Figure 4, the 25 largest observed filter cohorts for fasting
glucose are represented. Together, these covered approximately
80% of DPs in the data set. In line with the much larger number
of DPs compared with the HbA1c scenario, 20 of the largest
filter cohorts had >200 DPs. Contrary to the HbA1c scenario,
here the largest cohort was the “all_guidelines_variables_false,”
followed by the “healthy lifestyle_metformin cohort,” which is
in accordance with what we expected as the fasting glucose
values are used more frequently to diagnose T2DM and most
patients do not start medication immediately. Furthermore, of
the 25 largest cohorts, 17 (68%) had “healthy lifestyle,” 16
(64%) had “metformin,” 11 (44%) had “mobility impaired,” 7
(28%) had “age_above_70y,” and 3 (12%) had “mental
impaired,” all identical to the HbA1c scenario. Moreover, 23
(92%) of the 25 largest cohorts for the fasting glucose scenario
were also in the list of the 25 largest cohorts for the HbA1c
scenario, and the ranking in size was similar (≤3 positions
difference). No other pharmacological treatments than
metformin and gliclazide (4 occurrences) were represented in
the 25 largest cohorts.

Various precision cohorts for randomly selected patients were
constructed to verify that the chosen normalized distance
threshold of 2.0 indeed resulted in optimal cofactor balance
overall (data not shown) for the fasting glucose outcome
scenario as well.
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Figure 4. The 25 largest cohorts for fasting glucose as target outcome variable based on the filter variables. The blue bars represent the number of
decision points (DPs) on a logarithmic scale (left vertical axis), and the orange line shows the cumulative coverage on a linear percentage scale (right
vertical axis).

Treatment Options and Outcomes Analysis
Table 5 shows the overall controlled percentage of the 20 most
representative treatment options, that is, across all filter cohorts.
In >57.4% (16,480/28,709) of the cases, the existing treatment
was continued, and in only 23.29% (3839/16,480) of the cases,
this led to patients becoming “controlled” as judged by the
fasting glucose value. Interestingly, in this scenario, the option
of starting to take metformin and stopping the “no treatment”
resulted in a lower success percentage when compared with the
“no change” option. More differences are apparent when
comparing with the HbA1c scenario; overall, the percentages
of a “controlled” outcome seem more than 2-fold lower and
never >37%, thereby seemingly indicating a much more
pessimistic perspective.

Figure 5 represents the different treatment options observed in
a precision cohort for a given patient that belongs to the cohort

“Metformin with mobility impairments” using a Sankey
diagram.

Analyzing the Sankey diagram in Figure 5, we can notice that
for patients with mobility impairments who were taking
metformin, only a small proportion of those who were kept on
the same prescription met with an improved disease control
outcome. The ones who changed from metformin to gliclazide
showed an improvement, although the number of DPs for these
2 options was not very large, and the result was not statistically
significant as a consequence. These results showed that the set
of patients, similar to the patient of interest, had difficulties in
having the fasting glucose controlled and might need more
attention from the health care professionals. Many other cohorts
could be included; we chose 2 examples that had a decent
number of patients to show how this approach works in practice.
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Table 5. The 20 largest observed global treatment option groups for fasting glucose as the target outcome variable. The list shows the size of each
group and the associated percentage controlled during follow-up (n=28,710).

DPsa controlled, n (%)Frequency, n (%)Treatment option

3839 (23.29)16,480 (57.4)No change

586 (18.72)3130 (10.9)Metformin_new+healthy lifestyle_metformin_stopb

201 (19.88)1011 (3.52)Healthy lifestyle_new+healthy lifestyle_metformin_stopb

110 (17.21)639 (2.23)Metformin_new+no treatment_stopb

203 (31.82)638 (2.22)Healthy lifestyle_new+no treatment_stopc

59 (9.64)612 (2.13)Healthy lifestyle_metformin_new+metformin_stopb

157 (36.6)429 (1.49)Healthy lifestyle_metformin_new+healthy lifestyle_stopc

69 (17.29)399 (1.39)Healthy lifestyle_metformin_new+no treatment_stopb

28 (9.86)284 (0.99)Gliclazide_metformin_new+gliclazide_healthy lifestyle_metformin_stopb

97 (36.6)265 (0.92)Metformin_new+healthy lifestyle_stopc

32 (12.36)259 (0.9)Gliclazide_healthy lifestyle_new+healthy lifestyle_metformin_stopb

39 (17.49)223 (0.78)Gliclazide_new+gliclazide_healthy lifestyle_stopb

54 (26.47)204 (0.71)Gliclazide_new+healthy lifestyle_metformin_stopc

22 (13.33)165 (0.57)Gliclazide_new+metformin_stopb

5 (4.76)105 (0.37)Gliclazide_healthy lifestyle_metformin_new+healthy lifestyle_metformin_stopb

15 (14.71)102 (0.36)Healthy lifestyle_new+metformin_stopb

13 (12.75)102 (0.36)Metformin_new+gliclazide_healthy lifestyle_stopb

8 (8.16)98 (0.34)Gliclazide_metformin_new+gliclazide_healthy lifestyle_stopb

6 (6.45)93 (0.32)Healthy lifestyle_metformin_new+gliclazide_healthy lifestyle_stopb

2 (2.2)91 (0.32)Metformin_tolbutamide_new+healthy lifestyle_metformin_tolbutamide_stopb

aDP: decision point.
bTreatment options with a controlled percentage lower than the “no change” treatment option.
cTreatment options with a controlled percentage higher than the “no change” treatment option.
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Figure 5. Personalized treatment options observed in a precision cohort for a given patient belonging to the filter cohort “Metformin with mobility
impairments,” using fasting glucose as target outcome variable. The initial node, in black, includes all the decision points (DPs) in the precision cohort
for the particular patient of interest. This patient has all the guidelines variables as “False,” except the mobility impairment as “True,” and is currently
on a metformin prescription. Each pathway from the initial node is a different treatment decision observed in the data. The thickness of the pathway is
proportional to the number of DPs, and it is assigned with a label that represents the new medication, and the percentage of DPs controlled in the
follow-up. The “no change” treatment option is colored in gray, and it is considered the baseline treatment option. The terminal nodes represent the
outcome; the nodes in green denote the DPs that achieved control, whereas those in red indicate the uncontrolled ones. Treatment options with better
control than the baseline option are colored in green, whereas those with a worse control are colored in red. No treatment options with statistical
significance were found in the precision cohort for this patient.

Discussion

Principal Findings
This contribution evaluated the feasibility of using a precision
cohort treatment options approach to generate personalized
treatment options for patients with T2DM in the Dutch primary
care setting. The approach involves the identification of relevant
clinical treatment DPs from the longitudinal patient data to use
as events of interest for modeling and analysis, patient similarity
modeling for precision cohort construction, and treatment
options and outcomes analysis as main elements. All procedures
functioned well from a technical viewpoint; however, data size
limitations proved challenging for reaching statistical
significance for differences in outcomes of multiple treatment
options.

Decision Points
Key information considered with the DPs included outcomes,
clinical information (treatments and guidelines), and patient
condition (measurements and comorbidities).

Outcomes
Two target outcome variables for T2DM were considered in
this study, independently, to make the best use of the available
data, as both HbA1c and fasting glucose are clinical
measurements that can provide information about the T2DM
state of the patient. The use of the 2 different outcome variables
in separate scenarios enables a comparison between them and,
in our perspective, offers the physician an opportunity to choose
the one more relevant for a given clinical situation. In comparing
the results for both scenarios, it is important to consider their
different use in clinical practice. According to the guidelines,
fasting glucose is used for diagnosis and primarily for making
decisions about changing the dose of the prescribed medication.
As the medication dose was not available from the data set,
increasing the dose was considered to be a “no change” choice

in this analysis. This probably explains that the percentage of
“no change” cases for the glucose scenario was more than a
factor of 1.2 higher than for the HbA1c scenario. According to
the guidelines, only once the dosing is considered maximal, an
uncontrolled fasting glucose value may be used to initiate the
next progressive step in the treatment plan (ie, a different
medication). Contrastingly, HbA1c, which reflects the patient’s
glycemic status over the past 8 to 12 weeks, is specifically used
to decide whether to initiate a treatment change to a different
medication. From the data it appears that when a treatment
change is based on fasting glucose, the status during follow-up
is judged as “controlled” only approximately half as often as
when the treatment change is based on HbA1c. This difference
remains unexplained; however, the case might be that a fasting
glucose cutoff of 7 mmol/L is a more stringent criterion than
the HbA1c cutoff of 7%.

To mimic the situation in practice where measurements of
HbA1c and fasting glucose are intermittently made in the same
patient to follow disease status, we also tried to analyze a “mixed
case” scenario in which both HbA1c and fasting glucose
measurements were used to build the DPs (eg, use HbA1c to
identify a noncontrolled situation, then use fasting glucose to
evaluate the treatment follow-up). This approach, however, did
not result in the expected increase in the number of DPs
extracted from the data, so it was not pursued further. The
observed discrepancy in results for the different target variables
makes clear that for the implementation of the precision cohort
analytics approach in practice in the future, a unified definition
of when the disease is to be considered “controlled,” and a
common decision on what metric is to be used to assess it, needs
to be made.

Treatments and Guidelines
The data extraction retrieved all the usual medications used to
treat T2DM, except for SGLT-2 inhibitors. Since 2021, the
recommendations for high-risk patients include SGLT-2
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inhibitors as medication. The absence of this treatment in the
data set seemingly might indicate that the current Dutch
guidelines for patients with T2DM were not followed in the
study population. However, this can be explained not only by
the fact that the data used here are from before 2021 but also
by the fact that patients considered high risk are more likely to
be referred to a specialist in secondary care, whereas the
Nivel-PCD is concerned with primary care.

In the Netherlands, T2DM treatment over time has focused
increasingly on lifestyle adjustments where possible, especially
in the early stage of treatment where lifestyle improvement is
the first treatment of choice except for high-risk cases [37]. This
is, for example, reflected in a recent analysis of patients with
T2DM diagnosed between 2015 and 2019, which showed that
half of these patients did not receive antidiabetic medication
prescriptions within 1 year of the diagnosis data [38]. Thus,
lifestyle advices are probably often given; however, the fact
that the “all_guidelines_variables_false” cohort was the fourth
largest cohort for the HbA1c scenario seems to indicate that
lifestyle adjustment is not integrally registered in the data fields
within the Nivel-PCD (it is hardly imaginable that patients
diagnosed with T2DM would receive no treatment at all).
Incomplete registration of lifestyle treatment might have
occurred because it is a default standard choice, or possibly
because it is registered in the text fields of the patient dossiers
that GPs use to make notes and are not collected in the
Nivel-PCD. This will likely have led to an underestimation of
the “healthy lifestyle advice” treatment group and likely to some
misclassification, especially of patients in cohorts that involved
“no treatment_stop” in this analysis.

Moreover, the merging of the nonpharmacologic treatments
such as diet and exercise (registered as separate treatments in
the Nivel-PCD) into a single “healthy lifestyle advice” as done
in this study did not allow us to assess the individual
contribution of each of the separate lifestyle interventions.
However, this analysis still offers a way to evaluate the
importance of lifestyle interventions for the patient’s health.
Future studies could explore the efficacy of individual lifestyle
adjustments as a first line of therapy for patients with T2DM,
provided they are adequately registered.

The absence of medication dosage information in the available
data set means that the current approach cannot be used to
inform decisions regarding dosage changes. Similarly, the
influence of medications that are not directly targeting diabetes,
for example, the ones targeting blood pressure, was not
considered in this retrospective analysis. Nevertheless,
information on prescriptions of these other medications is
available in the data set, and as drugs may have interactions,
future studies might explore the possibility of including a larger
spectrum of medications for a deeper analysis, leading to more
refined models and decision-making tools.

Patient Condition
The idea to use both mobility and emotional states
complementary to standard clinical measurements such as blood
pressure, blood lipids, and creatinine came as a suggestion from
a GP consulted for the study. We took care to also include the
aspect that such impairment may be temporal instead of chronic,

for example, in the case of a broken leg. As mentioned, for this
exploratory analysis, we made subjective, intuitive choices to
operationalize these conditions, which were not validated by
independent experts. Therefore, they remain subject to debate.
However, the fact that 11 (44%) of the 25 largest cohorts
included “mobility impaired” suggests that it is indeed relevant
to include a mobility assessment as a filter variable for defining
the precision cohorts. The same holds for emotional state;
however, with inclusion in only 3 (12%) of the 25 largest
cohorts, the importance seems lower than for mobility
impairment.

The patient condition characteristics used in this analysis are
necessarily limited to the information available in the
Nivel-PCD. Information about social behavior, ethnicity,
socioeconomic status, medication adherence, and many other
factors was not included, which might have a major impact on
the disease outcome. This fact points to a world beyond what
was analyzed in this study.

Patient Similarity Modeling and Precision Cohort
Construction
The selection of precision cohorts was done in a 2-step
procedure, first a filtering step and then a similarity rating. The
filtering step was based on guidelines, mobility, and mental
state. The vast majority of the largest filter cohorts involved
metformin and lifestyle advice as treatments, reflecting the
importance of these as the first line of treatments according to
the clinical guidelines. Patient similarity modeling and precision
cohort construction were technically well feasible. However,
data size limitations became apparent for the HbA1c scenario,
where only 10 filter cohorts were considered sufficiently large
(>200 DPs) to allow the construction of precision cohorts. This
contrasts with the analysis of Ng et al [16] of the US EHR data,
where the 75 largest T2DM cohorts based on filter variables
had >200 DPs.

Treatment Options and Outcomes Analysis
The technical feasibility of treatment options and outcome
analysis was also well established. For the HbA1c target
outcome, approximately half of the global treatment options
resulted in better outcomes than the “no change” option. For
fasting glucose as the target outcome, this was the case for only
very few treatment options, suggesting that the use of fasting
glucose as the target outcome needs careful consideration. The
few examples of precision cohort–based treatment options and
outcomes analysis clearly illustrated the lack of statistical power
available with the current data set. This further underlines that
the method has high data availability requirements. Because a
correction for multiple testing has to be applied, reaching
statistical significance for differences in outcomes of multiple
treatment options proved challenging, even for filter cohorts
with 1000 DPs, as demonstrated in Figures 3 and 5. It is
estimated that to overcome this limitation, the data set size
should be at least an order of magnitude larger.

Future Perspectives
The method developed and applied for the Dutch primary care
situation in this study aims to create precision cohorts that
include a set of patients who are more similar to the patient of
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interest in different attributes, from classic clinical
measurements to assessments of mobility state and even mental
state. This would allow the physician to selectively consider a
group of patients that were in a very similar situation to the
patient of interest and view statistics on past outcomes of
available treatment options. Over time, with the increase in the
available patient information and developments in computational
methods, the ability to thus incorporate past clinical experience
to generate more personalized treatment options for individual
patients is enhanced, thereby potentially contributing to better
treatment outcomes.

In this study, we took a highly reductionist approach to defining
treatment outcome, that is, an HbA1c or fasting glucose clinical
test result that falls below a predetermined threshold. As such
it is of a highly reductionist nature.

Although we recognize that a patient’s perspective and
experience are crucial factors both in decision-making and in
evaluating treatment efficacy, our data-driven approach was as
yet unable to account for those aspects. Still, the technique can
support shared decision-making by practitioner and patient
because the information on expected treatment outcomes is
more personalized toward the individual patient and therefore
more relevant in the discussion when balancing risks and
expected outcomes with patient preferences and values.
Although this study did not explore the actual use of the
precision cohort approach for shared decision-making in
practice, it offers valuable insight into the potential use from a
data availability perspective.

It is important to mention that this approach does not aim to
replace or lessen the actions of the physicians but to provide
refined tools to support them in the medical decision-making
process.

The workflow elaborated in this study was applied to the T2DM
case but can be applied to any other disease or health disorder
for which rich data and guidelines are available. Indeed, Ng et
al [16] applied their approach to hypertension and

hyperlipidemia as well as T2DM. However, applying the
approach to different diseases requires rerunning all the steps
of the workflow to adapt for the different diseases, including
patient selection, choice of target outcome variables,
incorporation of applicable clinical guidelines, selection of
salient features, and tuning of the similarity model.

In this study, data availability was identified to be a principally
limiting factor for feasibility. Considering that further
personalization will lead to yet smaller cohorts, it is evident that
increasing the pool of data for the precision cohort approach is
essential to achieve a more meaningful and more robust analysis.
Given that approximately 1 million patients have T2DM in the
Netherlands, there is a realistic perspective for this; however,
it will require combining health data from different EHR sources
nationwide, which is a challenge in itself. This problem is
aggravated for diseases for which the amount of data (ie,
patients) is much smaller or the spectrum of treatment choices
is larger.

Although methods to reduce the presence of bias in the data
were applied, having more data available offers a possibility to
improve the workflow, especially with respect to better selection
of the confounder variables. This may lead to a better
generalization, improving the performance of the workflow as
a whole.

Conclusions
This study explored the feasibility of applying a patient
similarity–based precision cohort approach to derive
personalized treatment options for patients with T2DM treated
in primary health care in the Netherlands using the Nivel-PCD.
A previously published data analysis and modeling workflow
for US EHR data was successfully adapted for this Dutch
primary care setting, proving its potential for use in an LHS
context. Although the approach proved technically well feasible,
data size limitations need to be overcome before application for
CDS purposes becomes realistically possible.
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Multimedia Appendix 1
Features used for the similarity model for glycated hemoglobin. For each variable, the name, the use (filter or similarity), the type
of feature (numerical, Boolean, etc), and the similarity weight (influence on the model) are shown.
[PNG File , 193 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Features used for the similarity model for fasting glucose. For each variable, the name, the use (filter or similarity), the type of
feature (numerical, Boolean, etc), and the similarity weight (influence on the model) are shown.
[PNG File , 350 KB-Multimedia Appendix 2]
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