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Abstract

Background: Technological advancement has led to the growth and rapid increase of tuberculosis (TB) medical data generated
from different health care areas, including diagnosis. Prioritizing better adoption and acceptance of innovative diagnostic technology
to reduce the spread of TB significantly benefits devel oping countries. Trained TB-detection rats are used in Tanzaniaand Ethiopia
for operational research to complement other TB diagnostic tools. This technology has increased new TB case detection owing
to its speed, cost-effectiveness, and sensitivity.

Objective: During the TB detection process, rats produce vast amounts of data, providing an opportunity to identify interesting
patterns that influence TB detection performance. This study aimed to develop modelsthat predict if therat will hit (indicate the
presence of TB within) the sample or not using machine learning (ML) techniques. The goal was to improve the diagnostic
accuracy and performance of TB detection involving rats.

Methods: APOPO (Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling) Center in Morogoro provided data for this study
from 2012 to 2019, and 366,441 observations were used to build predictive models using ML techniques, including decision tree,
random forest, naive Bayes, support vector machine, and k-nearest neighbor, by incorporating a variety of variables, such asthe
diagnostic results from partner health clinics using methods endorsed by the World Health Organization (WHO).

Results. The support vector machine technique yielded the highest accuracy of 83.39% for prediction compared to other ML
techniques used. Furthermore, this study found that the inclusion of variables related to whether the sample contained TB or not
increased the performance accuracy of the predictive model.

Conclusions: Theinclusion of variablesrelated to the diagnostic results of TB samples may improve the detection performance
of thetrained rats. The study results may be of importance to TB-detection rat trainers and TB decision-makers as the results may
prompt them to take action to maintain the usefulness of the technology and increase the TB detection performance of trained
rats.
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Introduction

Background

African giant pouched rats (Cricetomys ansorgei) are native to
sub-Saharan Africa, making them resistant to local parasites
and diseases [1]. The term “pouched rat” refers to their large
cheek pouches that are used for carrying food back to their
burrows, where the food is either eaten or stored. Theseratsare
nocturnal and omnivorous, eating various insects, fruits, and
vegetables. They arelarge (adult males and femal esweigh about
1.3 kg and 1.2 kg, respectively) and are long-lived, averaging
8 years in captivity. Moreover, they have a highly developed
olfactory capacity, enabling them to do specific detection tasks
with training [2]. As such, in 1997, APOPO
(Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling or
“Anti-Personnel Landmines Detection Product Devel opment”
in English) started researching how to train these rats for scent
detection. APOPO is a Belgian nongovernmental organization
whose mission is to protect people and the planet using scent
detection animals [3]. Rat pups born at APOPO’s breeding
facility are weaned from their mother at 10 weeks old. Rats
begin training in a custom-engineered line cage immediately
after they are weaned. Training for tuberculosis (TB) detection
takes place in this apparatus, which requires upwards of 9
months to master. Each rat’'s home cage is outfitted with a clay
nest pot to simulate the rat’s natural underground burrow, a
wood shaving substrate, and unlimited access to water that is
routinely infused with a multivitamin and electrolyte
supplement. The majority of the diet of the rats is provided
during training sessions in the form of crushed commercia
rodent chow pellets mixed with mashed bananas and avocados,
which serves as appetitive reinforcement for the operant
conditioning procedures. This diet is supplemented with a
variety of fresh fruits, vegetables, and grains [3].

While APOPO began with training rats to detect landminesin
former conflict zones, the demonstrated success influenced the
2001 idea to adso train the rats to detect the presence of
Mycobacterium tuberculosis in human sputum samples [4].
Data reported annualy to the World Health Organization
(WHO) by countries show that TB is one of the major causes
of ill heath and death worldwide. TB is a life-threatening
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infectious disease that attacksthelungsand can also harm other
parts of the body. The transmission occurs from one person to
another when a person with TB talks, sneezes, or coughs. The
development of novel, accurate, robust, and rapid diagnostic
capabilities will result in improved case detection, disease
surveillance, health care delivery, and quality of futureresearch
[5]. In 2004, APOPO and Sokoine University of Agriculture
(SUA) partnered with the Tanzanian Nationa Institute of
Medica Research (NIMR) and the Tanzanian National
Tuberculosis and Leprosy Program (NTLP) to develop a
scent-detection technology for diagnosing human TB in
resource-poor areas [6]. While microscopy is the most
commonly used method to detect TB in developing countries,
its effectiveness remains a problem [3]. In Tanzania, the
Ministry of Health, Community Development, Gender, Elders,
and Children (MOHCDGEC) permitted APOPO to conduct
research using ratsto detect TB bacteriain sputum samples[7].

Figure 1 illustrates the concept of rat scent detection of TB.
Sputum  samples collected from partner DOTS
(directly-observed treatment, short-course) clinics are heat
inactivated (autoclaved) and then loaded into aluminum bars,
which are positioned beneath holesin the floor of the line cage
apparatus [4]. The rat sniffs each sample in succession as it
walks from one side of the apparatus to the other. The rats are
trained to pause over TB-positive samples for about 3 seconds
but to quickly move past TB-negative samples [1]. During
operational research, rats are rewarded with food for correctly
pausing over (or “indicating”) samples that the DOTS clinic
has determined to be TB positive. Samples which the DOTS
clinic determinesto be TB negative but which the rat indicates
asTB positive (by pausing for 3 seconds) areflagged as suspect
and subjected to additional confirmatory diagnostics in
APOPOQO'slaboratory, using WHO-endorsed methods (typically,
concentrated smear microscopy). During routine operational
research, APOPO’s scent detection rats evaluate upwards of
100 samples (averaging 10% TB positive) from DOTS clinics
within each 20-minute session. Referencing sample and patient
information within a secure database allows APOPO to
immediately notify the DOTS clinic of new cases so the patient
can be contacted and can begin treatment. This procedure has
effectively identified more than 29,000 TB patients who had a
missed diagnosis prior to evaluation by TB-detection rats [4].

Figure 1. Tuberculosis (TB) testing and detection using trained rats. The rats test and detect TB-negative and TB-positive samples.

Sample A Sample B

Conceptual Framework

Thetheoretical concepts and empirical framework of this study
are based on Signal Detection Theory (SDT). SDT describes
how features of the stimulus and detector factors affect
performance on stimulus detection tasks [8]. SDT helps to
distinguish between the sensitivity of a detector and the
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Sample C

Sample D Sample E

underlying signal. In medical diagnosis, this trandates to the
efficacy of a diagnostic tool to accurately detect the presence
of apathogen or other signal with medical significance[9], that
is, the diagnostic “sensitivity.” However, in rats, determining
diagnostic accuracy depends on the rat’s training and the
diagnostic results from partner health clinics using
WHO-endorsed methods. During training, the behavior of each
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rat is recorded, including indication responses committed in
response to samples known to either contain or not contain TB
(TB positive or TB negative). These data alow trainers to
accurately track each rat’s discrimination learning [4]. There
are numerous independent variables related to each rat
evaluation session, including therat’sidentity (name), age, sex,
and bodyweight, as well as the characteristics of the sample
itself, including DOTSclinic diagnostic results (ID_BL_DOTYS)
and results of any applicable confirmatory diagnosis within
APOPO’s laboratory (ID_BL_APOPO), which are combined
to form another independent variable called TB_Status.

In this study, one of the primary dependent variables was
captured as hit, which refers to whether or not (true or false)
therat provided an indication (continuously sniffed the sample
for at least 3 seconds, as estimated by the rat handler).
Combining the hit variable with WHO-endorsed diagnostic
results(ID_BL_DOTSandID_BL_APOPO) provided 4 possible
outcomes termed rat performance for each sample evaluated
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(Figure 2), including correct hit, miss, false alarm, and correct
reject, which are used in determining the diagnostic accuracy
of each rat. Correct hit refers to samples that the rat indicated
and were confirmed to contain TB; false alarm (or suspect)
refers to samples that the rat indicated but which could not be
confirmed to contain TB. Additionally, miss (sample confirmed
to be TB positive) and correct reject (no TB mycobacterium
confirmed) refer to samples that the rat failed to indicate (sniff
for 3 seconds) [3]. In other words, therat’s sensitivity represents
the percentage of correct hits out of the sum of total correct hits
and total misses (all confirmed TB-positive samples evaluated
by the rat). Similarly, the rat’s specificity represents the
percentage of correct rejects out of the sum of correct rejects
and false alarms (all samplesfound to be TB negative) [10]. By
thislogic, sensitivity refersto therat’s ability to accurately find
true positive (TP) cases, while specificity measures its ability
to accurately reject negative cases. Hence, sensitivity (correct
hit) and specificity (correct reject) together comprise overall
diagnostic accuracy.

Figure 2. Relationship among the status of tuberculosis (TB), hit, and the performance of the rat. Hit refers to whether or not (true or false) the rat

provided an indication.
Sample
|

Positive

Negative

From Figure 2, if the TB statuswas already known to be positive
at the time of the rat evaluation and hit was true, the rat's
behavior was categorized as “correct hit.” Conversely, if the
TB status was positive and hit was false, the rat’s behavior was
categorized as “miss.” On the other hand, if the TB status was
determined to be negative at the time of the rat evaluation and
hit wastrue, therat’s behavior was categorized as“falsealarm”
or suspect. Finally, if the TB status was negative and hit was
false, therat's behavior was categorized as “ correct reject.”

Hence, contrary to the study by Jonathan et al [10], this study
considered the status of TB in the sampletherat was evaluating.
In that study, the modeling methods only used the dichotomous
variable of hit as true or false (ie, did the rat sniff the sample
for =3 seconds) without regard for what the rat was sniffing.
Within the data set analyzed, about 78.8% of samples were not
hit (hit=false), somewhat reflecting the estimated underlying
prevalence of TB across the samples. However, assuming this
distribution reflected that the most common outcome (hit=fal se)
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served as the desired or correct outcome in all instances when
modeling rat performance, the models predicted when atrained
rat would fail to detect TB (ie, miss a TB-positive sample or
correctly reject a TB-negative sample) rather than detect it.
Furthermore, the predictive power of the models did not take
into account what the rats were smelling, since the rats were
trained to perform differently (hit true or false) depending on
the presence of TB withinthe sample. Therefore, theaim of this
study was to replicate the procedures of the study by Jonathan
et a [10] but with the inclusion of variables related to the
detection of TB and with expansion of modeling to include 2
additional machine learning (ML) agorithms.

Objectives of the Study

This study applied the same data set from APOPO’s
TB-detection rat training and research center in Morogoro,
Tanzania, as used by Jonathan et al [10] but with the inclusion
of WHO-endorsed diagnostic results, including those provided
by partner DOTS clinics (smear microscopy, ID_BL_DOTYS)
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and, where applicable, those performed by APOPO (either
concentrated smear microscopy, ID_BL_FM, or fluorescent
microscopy, |ID_BL_APOPO) to confirm samples flagged
suspect by therats. Aswith Jonathan et a [10], this study used
the decision tree, random forest, and naive Bayes algorithms
and included support vector machine (SVM) and k-nearest
neighbor (KNN) ML techniquesto improve the accuracy of the
predictive models. Furthermore, it provides extensive
simulations using real data to determine if ML techniques can
accurately predict the performance of rat TB detection.
Additionally, this paper compares the classification accuracy
performance of the 5 ML predictive models. The rest of this
paper is organized as follows: the Related Work subsection
provides details of related literature focusing on African giant
pouched rat TB detection, including the current status and its
implications, along with the application of ML in diagnosing
and detecting TB; the M ethods section presents the methodol ogy
of this study; the Results section provides a description of the
performance results and performance measurements of the
predictive models; and the Discussion section discusses the
findings, provides conclusions, and mentions the scope for
future work.

Related Work

Diagnosisof TB by African Giant Pouched Rats: Current
Status and its Implications

African giant pouched rats cost-efficiently complement other
TB diagnostic tools through second-line screening via scent
detection to increase TB case detection. Patient samples are
provided by partner DOTS clinicsthat performinitial screening.
Therats can test up to 100 samplesin 20 minutes or less, while
alaboratory technician requires about 4 daysto accomplish the
sametask using microscopy [11]. Samplesthat the clinic deems
TB negative but which theratsindicate are TB positive are then
retested using WHO-endorsed methods, such as concentrated
smear microscopy or GeneXpert. Samples that are confirmed
positive are communicated to the respective DOTS clinic,
effectively providing 24-hour result turnaround and improved
linkageto care[6]. Applying thismethod since 2007 has enabled
TB-detection rats to identify more than 29,000 patients who
had a missed diagnosis during initial screening [4]. Thus, rat
scent detection technology is of great importance to the
community and public health hospitals becauseit increases case
detection, enablestreatment, and curbsthe spread of the disease

3.

Application of ML and Big Data Analyticsin Diagnosing
and Detecting TB

Technology advancement has allowed access to data from
multidimensional sources with high throughput velocity. The
term used to describe this kind of data is “big data,” which is
difficult to analyze for interesting patterns or inefficiencies
without ML technologies[12]. The application of ML in health
care is important to improve human health, and ML and big
data analytic technologies have brought advancements in TB
health care services owing to the increase of health care data
and the availability of analytics to solve health problems [13].
ML is atechnology that enables a machine to learn from past
dataand predict the outcome. Thus, in health care, ML contains
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sophisticated algorithmsthat help to learn featuresfrom alarge
volume of health care data and then use the obtained insights
to assist clinical practices[14]. Big data analytics is the use of
advanced analytic techniques on vast amounts of data in
different formats, such as structured, semistructured, and
unstructured data, from different sources. Big dataanalytics can
help to discover wuseful information that facilitates
decision-making and health care outcome prediction. Therefore,
ML and big data analytics can assist physicians by providing
up-to-date medical information from clinical practicesfor proper
patient care. As such, the application of ML and big data
analytics can help to reduce diagnostic and human errorsin the
outcomes of clinical practices[15].

ML in health care depends on different techniques, which
include classification, clustering, and association, for its
operation. These techniques help to learn past data and detect
knowledge patterns [16]. Classification techniques are used to
develop modelsthat predict future events from the manipul ated
data and offer solutions to real-world health problems such as
diagnosis and treatment of diseases [16]. Classification is the
ML technique that operates by building predictive models that
categorize and assign labels to manipulated and newly
encountered instances[16]. These predictive modelshelp solve
multiclassification problems through prediction and analysis.
Moreover, the models are used as decision-support tools that
help medical professionalsinterpret diagnosis results[17]. For
example, Abdar et al [18] used the boosted C5.0 and CHAID
classification algorithms to build a decision tree model for the
early diagnosis and prediction of liver disease. In addition, ML
technologieswere used in the diagnosis of TB to categorize and
find relationships among the manipulated variables [19]. This
study developed an efficient and reliable framework for
automatic TB bacilli detection based on deep learning and ML
algorithms. The study al so suggested that a classification model
can be used to discriminate between positive and negative
samples[19].

The classification algorithms recently used in the diagnosis of
TB include decision tree, random forest, naive Bayes, SVM,
and KNN [20]. These algorithms are suggested as an adternative
for health care professionals to improve the diagnosis of TB.
The decision tree algorithm C4.5 was used to build a model to
predict the presence of TB bacteria. The results showed that the
decision tree had a prediction accuracy of 99% [21]. The
decision tree generates rules that are simple and easy to
understand and interpret for a decision maker [16].

Moreover, a random forest classification algorithm was used
to discriminate the TB bacilli with a sensitivity and specificity
of above 89.34% and 62.89%, respectively. Furthermore, it is
proposed that the naive Bayes algorithm can be used for the
diagnosis of TB [22]. Additionally, SVM is known as a useful
model to identify abnormalities in the lungs for the diagnosis
of TB [23]. Following this, algorithm comparison is of great
importance to find areliable algorithm in the given data [24].
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Methods

ML Algorithms

In thisstudy, the ML algorithms used are decision tree, random
forest, naive Bayes, SVM, and kNN to build predictive models
that categorize dataand assign alabel to manipulated and newly
encountered data. The purpose of involving different algorithms
is to compare and improve the prediction accuracy of rats for
TB detection.

Real Data Sets

This paper used 2 data sets provided by APOPO: detection rats
data set and RAT_WEIGHT data set, which were combined to

Table 1. Ratsdata set description.
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form the final data set, as shown in Table 1. The detection rats
data set contained 471,133 observations from 2011 to 2019 and
involved 18 variables (17 independent and 1 dependent). The
RAT_ WEIGHT data set contained 1438 records collected from
2012 to 2019 and involved 4 independent variables. Moreover,
these data contained 5 female rats with 1Ds 56, 72, 80, 85, and
96. However, the fifth rat with ID 96 from the RAT_WEIGHT
data set was eliminated in the analysis because it lacked the
necessary detection performance variables in the detection rats
data set. Therefore, 4 female rats were used in this study. The
2 data sets and corresponding variables are displayed in Table
1

Dataset and number Variable name Datatype Description Variable type

Detection rats data set
1 DOTS NAME String Name of the DOTS? center Independent
2 DOTS _PATIENTS NUMBER Integer Number of patients from the DOTS center Independent
3 ENTRY_YEAR Integer Year when the patient attended the DOTS center Independent
4 ID_SAMPLE Integer Identification of the sample Independent
5 ID_BL_DOTS Integer Identification of the bacterialevel fromthe DOTScenter  Independent
6 HIT Boolean TBP detection rat performance (categorical variable) ~ Dependent
7 ID_BL_APOPO Integer I dentification of the bacterialevel from the APOPO®  Independent

center
8 ID_CONFIGURATION Integer Identification of the cage during training Independent
9 ID_BL_FM Integer Identification of the bacterialevel by fluorescence mi-  Independent
croscopy

10 ID_EVALUATION_SESSION Integer Identification of the evaluation session Independent
11 SESSION_DATE Date Date when a session was performed Independent
12 ID_RAT Integer Identification of the rat Independent
13 RAT_NAME String Name of therat Independent
14 GENDER String Sex of therat Independent
15 AGE Integer Ageof therat Independent
16 START_TIME DateTime Date and time when the detection task started Independent
17 END_TIME DateTime Date and time when the detection task ended Independent
18 DOB Date Date when the rat was born Independent

RAT_WEIGHT data set
1 ID_RAT Integer Identification of therat Independent
2 RAT_NAME String Name of therat Independent
3 WEIGHT_DATE Date Date when the weight of the rat was measured Independent
4 WEIGHT Integer Weight of the rat Independent

8DOTS: directly-observed treatment, short-course.
bTB: tuberculosis.
CAPOPO: Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling.
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Applied Variables

The data underwent initial preprocessing to obtain the required
variables for developing the predictive models. All data
preparation was implemented by Python owing to its large
number of librariesfor scientific computing and the devel opment
of ML predictive models[24]. The sample (either TB negative
or the bacterial concentration of TB positivity provided by the
partner DOTS clinic, ID_BL_DOTS) was compared to
APOPOQO'’s confirmatory diagnosis (where applicable) using
concentrated smear microscopy (ID_BL_APOPO) to create a
variable termed Definitive_Status. This variable reflected the
APOPO result when one was provided; otherwise, it indicated
the DOTS clinic result. The Definitive Status was then
transformed into the dichotomous variables of TB_Status to
reflect thefinal status of the sample as either positive or negative
for TB (collapsing across bacterial concentrations for positive
samples). Then, TB_Status was compared to hit to compute the
dependent variable of Rat_Performance, which consists of 4
categories: correct hit, miss, false alarm, and correct reject
(Figure 2).

After the data preparation, 4 variables for the detection
performance of therats, including TB_Status, age, weight, and
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hit, as shown in Table 2, were used to build the predictive model.
Moreover, this study used 366,441 observations for analysis
after removing the null rows from the rats data set to prevent
noises, outliers, and inconsistencies in the data. The sklearn
model selection library through atrain-test split classwas used
to partition the data (366,441 observations) into 256,508
observations (70%) in thetraining dataand 109,933 observations
(30%) inthetest data. It isimportant to mention that, due to the
binary nature of many variables and the underlying prevalence
of TB infections, the data used in this study lack a normal
distribution, as shown in Multimedia Appendix 1.

Categorical variableswere used to build predictive models, and
256,508 observations (70%) were used for training the models.
The TB_Status variable consisted of 10.90% (27,950/256,508)
positive samples and 89.10% (228,558/256,508) negative
samples. The hit variable consisted of 21.33% (54,719/256,508)
true values and 78.67% (201,789/256,508) false values.

Table 3 shows a statistical summary of the distribution of
continuous variable data before and after the random data split.
Despite most of the distributions being the same, the mean of
age and weight variables showed adifference of 0.01. Moreover,
the SD of ID_RAT and weight differed by 0.01.

Table 2. Description of the dependent and independent variables used to build predictive models.

Variable Description Datatype Variabletype  Value

TB_Stalus  Fingl diagnosisof the sample aseither TB? positive or TB negative. Combines  OPject Indep?aldmt/cat- Trueor false
the diagnostic results of both DOTS? and APOPO® (Iab confirmation, when egort
applicable) wherein APOPO status (results) overrides DOTS.

Age Age of therat in years at the time when the rat evaluated the patient sample  Object Independent Ageranges from 0.79 to
in question 7.95 years

Weight Averagerat body weight (in grams) per year because most of DetectionRats-  Object Independent Average rat body weight
Datadescribesthe daily detection tasks and missestheir corresponding weights ranges from 843.67 to
since the weight of the rats from the RAT_WEIGHT data set was measured 1054.83 grams
every week.

Hitd Defined as a continuous sniff (nose insertion into the cage hole) for >3 sec-  Object Dependent/cate- True or false
onds. True means the rat “indicated” that the sample contained TB (held its gorica

noseintheholefor at least 3 seconds). False meanstherat rejected the sample
(did not hold its nose for at least 3 seconds).

8TB: tuberculosis.

bpoTs: directly-observed treatment, short-course.

CAPOPO: Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling.
9Hit refers to whether or not (true or false) therat provided an indication.
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Table 3. Descriptive statistics of the continuous variables used to build predictive models before and after random data split.

Data split status and variable Age (years) Weight (g)
Before random data split (n=366,441, 100%)
Mean 3.83 899.40
SD 172 84.37
IQR 371 866.80
Minimum 0.79 843.67
Maximum 7.95 1054.83
After random data split (n=256,508, 70%)
Mean 3.84 899.41
SD 172 84.36
IQR 371 866.80
Minimum 0.79 843.67
Maximum 7.95 1054.83
Model Building independent variable based on the altered data. The naive Bayes

The predictive model in this study was developed using 5
different ML techniques: decision tree, random forest, naive
Bayes, SVM, and kKNN. This study used Python libraries for
data preprocessing, matrix processing, mathematical functions,
visualization, and classification. These are Pandas, Numpy,
Matplotlib, and Scikit-learn [25]. The repetitive approach was
used to generate a decision tree by dividing the training data.
The data were divided recursively until the same class of
variables, depending on conditions, using roughly 15,000
samples per leaf, were distributed among each division to create
the decision tree. After that, each nodein the decision tree used
a split point to test the altered variables and choose how to
divide the data. The split decision was concerned with the
information gain and entropy of a computed variable. The
variable that had the greatest information gain and the least
entropy was therefore divided and put to the test. The choice
regarding the data split and decision tree building was made
based on information gain and entropy [16]. This study used
pruning to maintain control over the parameters being used to
remedy expansion.

During the training procedure, many decision trees were
randomly constructed using the random forest technique. Based
on the provided manipulated variables, the algorithm’s ultimate
decision was based on the selection of the majority of thetrees.
There was a connection between the outcome and the number
of treesin theforest. The outcome was therefore more accurate
with an increase in the number of trees. As a result, the
technique handled 500 trees in the ensemble, and it calculated
theerror rate using thetraining set of information. In the random
forest approach, the training datawere used to generate random
splits for the root node and variable node. Since there was no
parameter control during training, the connection between trees
remained strong. Additionally, the frequency and values of the
adjusted variables from the provided data were counted to
generate the classification model using the naive Bayes method.
This method determined the dependent variable’'s a priori
probabilities as well as the conditional probabilities for each

https://ojphi.jmir.org/2024/1/e50771

technique has been specifically utilized to contrast its prediction
performance with the outcomes produced by other ML
techniques. It does not display the weights of each variable
included in the classification.

SVM is one of the most common supervised ML agorithms
owing to its greater predictive power. SVM analyzes data,
recognizes patterns, and produces input-output functions from
aset of labeled training data. It works by classifying aresponse
variable by drawing a decision boundary line or hyperplane to
separate 2 classes. Then, the maximum margin hyperplanesare
constructed to optimally separate the output classes from each
other in the training data. The goa is to find the optimal
separating hyperplane where the separating margin is
maximized. The linear kernel was used to allow flexibility and
lossfunctions. ThekNN algorithmisasupervised ML agorithm
that works by identifying a set of k-nearest observations to the
test point and cal cul ating mainly the Euclidean distance between
an observation and itskNN intraining data. Thek in kNN refers
to the number of nearest neighbors the classifier will retrieve
and use to make its prediction. The chosen k in kNN was 1, as
it is suggested to provide the best test prediction.

Perfor mance M easurements

This study used accuracy, specificity, sensitivity, and F1 score
as metrics to evaluate the performance of the generated
predictive models and compare classification performances.
These measurements were supported in the scikit-learn library
through the classification report class.

Accuracy

The classification accuracy was calculated based on the
confusion matrix, which accurately categorized the actual class
labels of the test data and the class labels of the predicted
models. It was also obtained by dividing the number of truly
classified instances by the number of instancesin thetest phase.
Accuracy considers TP, true negative (TN), false positive (FP),
and false negative (FN). The classification accuracy for the data
set was measured according to the following formula:
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Accuracy = (TP+TN)/ (TP+ FP+ TN + FN) (1)
Sensgitivity
Sensitivity isdefined asthe number of TP casesover the number
of TP cases plus the number of FN cases. Sensitivity identifies
the correct positive predictions relative to the total actual

positive cases. It is sometimes called a recall metric. The
formula of sensitivity is asfollows:

Sensitivity = TP/ (TP + FN) (2)
Specificity
Specificity istheratio between TN casesand all negative cases.
In this study, the precision measure identified the correct
positive predictions relative to total positive predictions. For
diagnostic tools, this could be termed positive predictive value
(PPV) or precision. It essentially provides confidence that any

given positive response reflects atruly positive condition [25].
The formula of specificity is asfollows:

Specificity = TN / (TN + FP) (3)
F1 Score

The F1 scoreisthe harmonic mean of specificity and sensitivity.
Basicaly, it is the weighted average of specificity and
sensitivity. The F1 score was calculated from the specificity
and sensitivity of the test data set [25]. The formula of the F1
scoreisasfollows:

F1 score = 2 ([Precision x Sensitivity] / [Precision +
Sensitivity]) (4)
It is important to mention that specificity and sensitivity are
similar to precision and recall, respectively.
Restrictions of the Study

This study ran the predictive models on acomputer with aCore
i5-5300U CPU at 2.30 GHz (2301 MHz, 2 cores, 4 logical

Jonathan et al

processors) and 8 GB of RAM. The sample size, on the other
hand, was small, with only 4 rats and a gender imbalance.
Moreover, the hit variable consisted of fewer true values
(21.26%) than false values (78.74%).

Ethical Consider ations

The study was approved by the SUA
(DPRTC/R/142/val.01/104) and M edical Research Coordinating
Committee of Tanzania (NIMR/HQ/R.8a/Vol.1X/3905). The
use of African giant pouched rats as a potentia tool for TB
diagnosis has received ethics clearance from the Tanzanian
Medical Research Coordinating Committee [26]. The Office of
Laboratory Anima Welfare has approved APOPO’s Animal
Welfare Assurance (OLAW, Assurance Identification Number
A5720-01).

Results

Comparing Classification Per for mance M easurements
of the Predictive M odels

This study used different ML techniquesto build the predictive
models following the methodology presented in Figure 3.
Moreover, this study employed several metrics, including
accuracy, sensitivity, specificity, and F1 score, to measure the
classification performance of the predictive models based on
test data. Figure 4 shows the confusion matrices of the SVM
and random forest classifiers, while Table 4 summarizes the
performance of all 5 ML techniques used to build the predictive
models. The accuracy classification performance of the kNN
technique was low at about 81.25%, while the best performing
algorithm was SVM. Asit can be seen from Table 4, validation
showed that the SVM classifier based on the 4 variables shown
in Table 2 achieved an accuracy of 83.39%, but it also reported
that SVM had better ability to recognize the status of TB as
either positive or negative in a given sample.

Figure 3. Process flow of machine learning—based prediction models of rat tuberculosis detection performance. The rectangle symbols represent data,
while the histogram entails model evaluation metrics. DT: decision tree; KNN: k-nearest neighbor; NB: naive Bayes, RF: random forest; SVM: support

vector machine.
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Figure 4. Confusion matrices of the predictive models. (A) Support vector machine classifier; (B) Random forest classifier.

(A)

=] 3420
w
I~
',_
- - 14834 8367
I I
0 1
Predicted
(B)
o 2900
w
c
',_
- - 15377 7824
I I
0 1

Predicted

https://ojphi jmir.org/2024/1/e50771

RenderX

80000

70000

60000

50000

- 40000

- 30000

- 20000

- 10000

80000

70000

60000

50000

- 40000

- 30000

- 20000

- 10000

Online J Public Health Inform 2024 | vol. 16 | 50771 | p. 9
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

ONLINE JOURNAL OF PUBLIC HEALTH INFORMATICS Jonathan et &

Table 4. Comparing the classification performance of classifiers of rat tuberculosis detection.

Classification performance measurement Predictive model

Decisontree Randomforest Naive Bayes Support vector machine K-nearest neighbor

Accuracy, % 83.32 83.38 82.56 83.39 81.25
Sensitivity, % 65.00 65.00 63.00 66.00 64.05
Specificity, % 79.00 79.00 77.00 78.00 72.05
F1 score, % 67.00 67.00 66.00 69.00 66.05
Correctly classified observations (true positive), n 91,602 91,602 90,370 91,602 89,326
Incorrectly classified observations (false negative), n 18,331 18,331 19,163 18,331 20,607

. . . From Table 5, higher (0.817152) and lower (0.026657) mean
Important Variables Influencing the TB Detection decreases in the Gini value result in greater and less variable
Performance of the Rats importance, respectively. In other words, TB_Status and weight
Thisstudy used the random forest variableimportance function  were the most and least significant variables, respectively, for
to output the predictor variables based on the mean decreasein  predicting rat TB detection accuracy. However, for easy
Gini (impurity). Random forest showed high performance in  interpretation and visualization of these results, the variable
the feature ranking. The mean decrease in the Gini valueisthe  importance function of the random forest algorithm sorted and
average (mean) of avariable's total decrease in the likelihood  displayed the variables as reported in Multimedia Appendix 2
of incorrect classification of anew instance of arandomvariable  based on the prediction importance. As such, the variable that
from the data set. Multimedia Appendix 2 shows the predicted  contributed most to the prediction had the highest mean decrease
variable importance based on the mean decrease in the Gini  in Gini values, followed by the variables with less importance.
value using the random forest algorithm.

Table 5. Random forest variable importance based on the mean decrease in the Gini value.

Variable Variable name Mean decrease in the Gini value
0 TB_Status 0.817152
1 Age 0.156190
2 Weight 0.026657

Algorithm for the Prediction of Rat TB Detection an]i'ggtswﬁr;eenﬂ?gag pﬂ?r',;“?ﬂé Ff;mﬂgt%thfieprzigj Ct(gé
Performance visualization was performed using the Matplotlib library for
Thestudy also employed aprediction agorithm for TB detection  proper interpretation of the results. On the other hand, if the
asillustrated in Textbox 1. constraints were not met, the algorithm could be terminated.

Textbox 1 shows the agorithm that predicts if the rat will hit  In addition to the above algorithm for the prediction of rat TB
the sample or not. First, data were imported and normalizedto  detection performance, Figure 3 indicates the process flow of
acquire the required dataformat. Then, the statistical summary ML models and their predictions using Python libraries. The
of the independent variables used to build predictive models TB input dataset wasimported asa.csv file. After preprocessing
was described. Considering Figure 3, thetrain_test_splitlibrary  the data, the skiearn model selection library was used to partition
was used to divide the data set into training data (70%) for the datainto training data (70%) and test data (30%) by using
developing the models and test data (30%) for validating the a simple random split method. The training data were used to
models. The predictive models were trained based on the build a predictive model using decision tree, random forest,
decision tree, random forest, naive Bayes, SVM, and kNN  naive Bayes, SVM, and kNN classifiers. After building the
classifiers, using the train data. Meanwhile, the validation of  predictive model, the inputs, including TB_Status, age, and
the models was performed using the test data. Then, accuracy, weight, were computed to predict if the rat would hit the sample
sensitivity, specificity, and F1 score were used to measurethe  or not. Thereafter, the predictive models were evaluated for
classification performance of each classifier, as reported in  their prediction performance using accuracy, sensitivity,
Table 4. Furthermore, the input variables TB_Status, age, and  specificity, and recall metrics.
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Textbox 1. Algorithm for the prediction of rat tuberculosis detection performance.

I. Import and normalize the dataset (.csv)

I1. Calculate IQR, mean, SD, minimum, and maximum
I11. Perform splitting of the data set

1. if splitting is successful and not any constraints then

- train the model

3. Perform validation of the ML modeling
4. Perform ML model prediction

6. if accuracy and other parameters are good then

- input: TB_Status, age, weight

7. Perform ML model prediction if the rat would hit the sample or not
8. Update the predicted value of new data for reporting

9. Make data visualization in Python

10. else

11. Perform termination check

12. else

13. End

2. Perform machine learning (ML) modeling based on decision tree, random forest, naive Bayes, support vector machine, and k-nearest neighbor

5. Validate the prediction model by calculating accuracy, sensitivity, specificity, and F1 score

Discussion

Principal Findings

Theaim of thisstudy wasto build on the prior work of Jonathan
et a [10] to develop modelsthat predict if atrained TB-detection
rat would hit (indicate the presence of TB within) a patient
sample or not using ML techniques by incorporating variables
related to the diagnostic results of the TB samples. This study
used decision tree, random forest, naive Bayes, SVM, and KNN
ML techniques to build predictive models. The ML techniques
successfully categorized the data by assigning a label to each
computed data point. The resultsreveal ed that for the 5 different
algorithms used, the classification accuracy wasthe greatest for
SVM, suggesting its superiority to the decision tree, random
forest, naive Bayes, and kNN classifiers. The SVM classifier
outperformed by yielding a classification accuracy of about
83.39% for predicting if the rat would hit the sample or not.
This level of accuracy surpasses the 78.82% accuracy found
with decision tree and naive Bayes by Jonathan et al [10],
suggesting that the inclusion of sampleinformation servesasa
valuable variable that influences the performance of
TB-detection rats and improves the accuracy of the prediction
models. Moreover, Jonathan et a [10] employed asmall amount
of data compared to the data used in this study. In fact,
TB_Status was found to be the most significant variable in
predicting rat TB detection performance. However, there was
an insignificant accuracy difference between the constructed
models and those created by Jonathan et a [10], which could

https://ojphi.jmir.org/2024/1/e50771

be due to the characteristics of the data [16]. Therefore, the
additional variables are likely to influence rat behavior, and the
true status of patient samples can only be determined by
available diagnostics.

Conclusion

This study has shown the usefulness of ML techniques to
identify factorsthat influence TB detection performance of rats.
The techniques used were decision tree, random forest, naive
Bayes, SVYM, and kNN to develop modelsthat predict if therat
would hit the sample or not by incorporating valuable variables
related to TB detection performance of rats. The performance
of the predictive modelswas measured by accuracy, sensitivity,
specificity, and F1 score metrics. The results showed that the
SVM predictive model outperformed in the classification and
prediction of the performance of ratsin TB detection by yielding
the highest accuracy of 83.39%. Furthermore, the obtained
results suggest that the inclusion of variables related to the
diagnostic results of TB samples improves the performance of
the predictive models. Therefore, the results might benefit
TB-detectionrat trainersand TB decision-makersinimproving
the diagnostic accuracy of rats by predicting if a trained
TB-detection rat would hit a patient sample or not. They can
adopt several measures, including ensuring that all hit sasmples
are confirmed within APOPO's laboratory (ID_BL_APOPO).
Furthermore, taking into consideration that the age of therat at
hit and clinic diagnostic results are predictors of detection
performance.
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