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Abstract

Background: Technological advancement has led to the growth and rapid increase of tuberculosis (TB) medical data generated
from different health care areas, including diagnosis. Prioritizing better adoption and acceptance of innovative diagnostic technology
to reduce the spread of TB significantly benefits developing countries. Trained TB-detection rats are used in Tanzania and Ethiopia
for operational research to complement other TB diagnostic tools. This technology has increased new TB case detection owing
to its speed, cost-effectiveness, and sensitivity.

Objective: During the TB detection process, rats produce vast amounts of data, providing an opportunity to identify interesting
patterns that influence TB detection performance. This study aimed to develop models that predict if the rat will hit (indicate the
presence of TB within) the sample or not using machine learning (ML) techniques. The goal was to improve the diagnostic
accuracy and performance of TB detection involving rats.

Methods: APOPO (Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling) Center in Morogoro provided data for this study
from 2012 to 2019, and 366,441 observations were used to build predictive models using ML techniques, including decision tree,
random forest, naïve Bayes, support vector machine, and k-nearest neighbor, by incorporating a variety of variables, such as the
diagnostic results from partner health clinics using methods endorsed by the World Health Organization (WHO).

Results: The support vector machine technique yielded the highest accuracy of 83.39% for prediction compared to other ML
techniques used. Furthermore, this study found that the inclusion of variables related to whether the sample contained TB or not
increased the performance accuracy of the predictive model.

Conclusions: The inclusion of variables related to the diagnostic results of TB samples may improve the detection performance
of the trained rats. The study results may be of importance to TB-detection rat trainers and TB decision-makers as the results may
prompt them to take action to maintain the usefulness of the technology and increase the TB detection performance of trained
rats.

(Online J Public Health Inform 2024;16:e50771) doi: 10.2196/50771
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Introduction

Background
African giant pouched rats (Cricetomys ansorgei) are native to
sub-Saharan Africa, making them resistant to local parasites
and diseases [1]. The term “pouched rat” refers to their large
cheek pouches that are used for carrying food back to their
burrows, where the food is either eaten or stored. These rats are
nocturnal and omnivorous, eating various insects, fruits, and
vegetables. They are large (adult males and females weigh about
1.3 kg and 1.2 kg, respectively) and are long-lived, averaging
8 years in captivity. Moreover, they have a highly developed
olfactory capacity, enabling them to do specific detection tasks
with training [2]. As such, in 1997, APOPO
(Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling or
“Anti-Personnel Landmines Detection Product Development”
in English) started researching how to train these rats for scent
detection. APOPO is a Belgian nongovernmental organization
whose mission is to protect people and the planet using scent
detection animals [3]. Rat pups born at APOPO’s breeding
facility are weaned from their mother at 10 weeks old. Rats
begin training in a custom-engineered line cage immediately
after they are weaned. Training for tuberculosis (TB) detection
takes place in this apparatus, which requires upwards of 9
months to master. Each rat’s home cage is outfitted with a clay
nest pot to simulate the rat’s natural underground burrow, a
wood shaving substrate, and unlimited access to water that is
routinely infused with a multivitamin and electrolyte
supplement. The majority of the diet of the rats is provided
during training sessions in the form of crushed commercial
rodent chow pellets mixed with mashed bananas and avocados,
which serves as appetitive reinforcement for the operant
conditioning procedures. This diet is supplemented with a
variety of fresh fruits, vegetables, and grains [3].

While APOPO began with training rats to detect landmines in
former conflict zones, the demonstrated success influenced the
2001 idea to also train the rats to detect the presence of
Mycobacterium tuberculosis in human sputum samples [4].
Data reported annually to the World Health Organization
(WHO) by countries show that TB is one of the major causes
of ill health and death worldwide. TB is a life-threatening

infectious disease that attacks the lungs and can also harm other
parts of the body. The transmission occurs from one person to
another when a person with TB talks, sneezes, or coughs. The
development of novel, accurate, robust, and rapid diagnostic
capabilities will result in improved case detection, disease
surveillance, health care delivery, and quality of future research
[5]. In 2004, APOPO and Sokoine University of Agriculture
(SUA) partnered with the Tanzanian National Institute of
Medical Research (NIMR) and the Tanzanian National
Tuberculosis and Leprosy Program (NTLP) to develop a
scent-detection technology for diagnosing human TB in
resource-poor areas [6]. While microscopy is the most
commonly used method to detect TB in developing countries,
its effectiveness remains a problem [3]. In Tanzania, the
Ministry of Health, Community Development, Gender, Elders,
and Children (MOHCDGEC) permitted APOPO to conduct
research using rats to detect TB bacteria in sputum samples [7].

Figure 1 illustrates the concept of rat scent detection of TB.
Sputum samples collected from partner DOTS
(directly-observed treatment, short-course) clinics are heat
inactivated (autoclaved) and then loaded into aluminum bars,
which are positioned beneath holes in the floor of the line cage
apparatus [4]. The rat sniffs each sample in succession as it
walks from one side of the apparatus to the other. The rats are
trained to pause over TB-positive samples for about 3 seconds
but to quickly move past TB-negative samples [1]. During
operational research, rats are rewarded with food for correctly
pausing over (or “indicating”) samples that the DOTS clinic
has determined to be TB positive. Samples which the DOTS
clinic determines to be TB negative but which the rat indicates
as TB positive (by pausing for 3 seconds) are flagged as suspect
and subjected to additional confirmatory diagnostics in
APOPO’s laboratory, using WHO-endorsed methods (typically,
concentrated smear microscopy). During routine operational
research, APOPO’s scent detection rats evaluate upwards of
100 samples (averaging 10% TB positive) from DOTS clinics
within each 20-minute session. Referencing sample and patient
information within a secure database allows APOPO to
immediately notify the DOTS clinic of new cases so the patient
can be contacted and can begin treatment. This procedure has
effectively identified more than 29,000 TB patients who had a
missed diagnosis prior to evaluation by TB-detection rats [4].

Figure 1. Tuberculosis (TB) testing and detection using trained rats. The rats test and detect TB-negative and TB-positive samples.

Conceptual Framework
The theoretical concepts and empirical framework of this study
are based on Signal Detection Theory (SDT). SDT describes
how features of the stimulus and detector factors affect
performance on stimulus detection tasks [8]. SDT helps to
distinguish between the sensitivity of a detector and the

underlying signal. In medical diagnosis, this translates to the
efficacy of a diagnostic tool to accurately detect the presence
of a pathogen or other signal with medical significance [9], that
is, the diagnostic “sensitivity.” However, in rats, determining
diagnostic accuracy depends on the rat’s training and the
diagnostic results from partner health clinics using
WHO-endorsed methods. During training, the behavior of each
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rat is recorded, including indication responses committed in
response to samples known to either contain or not contain TB
(TB positive or TB negative). These data allow trainers to
accurately track each rat’s discrimination learning [4]. There
are numerous independent variables related to each rat
evaluation session, including the rat’s identity (name), age, sex,
and bodyweight, as well as the characteristics of the sample
itself, including DOTS clinic diagnostic results (ID_BL_DOTS)
and results of any applicable confirmatory diagnosis within
APOPO’s laboratory (ID_BL_APOPO), which are combined
to form another independent variable called TB_Status.

In this study, one of the primary dependent variables was
captured as hit, which refers to whether or not (true or false)
the rat provided an indication (continuously sniffed the sample
for at least 3 seconds, as estimated by the rat handler).
Combining the hit variable with WHO-endorsed diagnostic
results (ID_BL_DOTS and ID_BL_APOPO) provided 4 possible
outcomes termed rat performance for each sample evaluated

(Figure 2), including correct hit, miss, false alarm, and correct
reject, which are used in determining the diagnostic accuracy
of each rat. Correct hit refers to samples that the rat indicated
and were confirmed to contain TB; false alarm (or suspect)
refers to samples that the rat indicated but which could not be
confirmed to contain TB. Additionally, miss (sample confirmed
to be TB positive) and correct reject (no TB mycobacterium
confirmed) refer to samples that the rat failed to indicate (sniff
for 3 seconds) [3]. In other words, the rat’s sensitivity represents
the percentage of correct hits out of the sum of total correct hits
and total misses (all confirmed TB-positive samples evaluated
by the rat). Similarly, the rat’s specificity represents the
percentage of correct rejects out of the sum of correct rejects
and false alarms (all samples found to be TB negative) [10]. By
this logic, sensitivity refers to the rat’s ability to accurately find
true positive (TP) cases, while specificity measures its ability
to accurately reject negative cases. Hence, sensitivity (correct
hit) and specificity (correct reject) together comprise overall
diagnostic accuracy.

Figure 2. Relationship among the status of tuberculosis (TB), hit, and the performance of the rat. Hit refers to whether or not (true or false) the rat
provided an indication.

From Figure 2, if the TB status was already known to be positive
at the time of the rat evaluation and hit was true, the rat’s
behavior was categorized as “correct hit.” Conversely, if the
TB status was positive and hit was false, the rat’s behavior was
categorized as “miss.” On the other hand, if the TB status was
determined to be negative at the time of the rat evaluation and
hit was true, the rat’s behavior was categorized as “false alarm”
or suspect. Finally, if the TB status was negative and hit was
false, the rat’s behavior was categorized as “correct reject.”

Hence, contrary to the study by Jonathan et al [10], this study
considered the status of TB in the sample the rat was evaluating.
In that study, the modeling methods only used the dichotomous
variable of hit as true or false (ie, did the rat sniff the sample
for ≥3 seconds) without regard for what the rat was sniffing.
Within the data set analyzed, about 78.8% of samples were not
hit (hit=false), somewhat reflecting the estimated underlying
prevalence of TB across the samples. However, assuming this
distribution reflected that the most common outcome (hit=false)

served as the desired or correct outcome in all instances when
modeling rat performance, the models predicted when a trained
rat would fail to detect TB (ie, miss a TB-positive sample or
correctly reject a TB-negative sample) rather than detect it.
Furthermore, the predictive power of the models did not take
into account what the rats were smelling, since the rats were
trained to perform differently (hit true or false) depending on
the presence of TB within the sample. Therefore, the aim of this
study was to replicate the procedures of the study by Jonathan
et al [10] but with the inclusion of variables related to the
detection of TB and with expansion of modeling to include 2
additional machine learning (ML) algorithms.

Objectives of the Study
This study applied the same data set from APOPO’s
TB-detection rat training and research center in Morogoro,
Tanzania, as used by Jonathan et al [10] but with the inclusion
of WHO-endorsed diagnostic results, including those provided
by partner DOTS clinics (smear microscopy, ID_BL_DOTS)
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and, where applicable, those performed by APOPO (either
concentrated smear microscopy, ID_BL_FM, or fluorescent
microscopy, ID_BL_APOPO) to confirm samples flagged
suspect by the rats. As with Jonathan et al [10], this study used
the decision tree, random forest, and naïve Bayes algorithms
and included support vector machine (SVM) and k-nearest
neighbor (kNN) ML techniques to improve the accuracy of the
predictive models. Furthermore, it provides extensive
simulations using real data to determine if ML techniques can
accurately predict the performance of rat TB detection.
Additionally, this paper compares the classification accuracy
performance of the 5 ML predictive models. The rest of this
paper is organized as follows: the Related Work subsection
provides details of related literature focusing on African giant
pouched rat TB detection, including the current status and its
implications, along with the application of ML in diagnosing
and detecting TB; the Methods section presents the methodology
of this study; the Results section provides a description of the
performance results and performance measurements of the
predictive models; and the Discussion section discusses the
findings, provides conclusions, and mentions the scope for
future work.

Related Work

Diagnosis of TB by African Giant Pouched Rats: Current
Status and its Implications
African giant pouched rats cost-efficiently complement other
TB diagnostic tools through second-line screening via scent
detection to increase TB case detection. Patient samples are
provided by partner DOTS clinics that perform initial screening.
The rats can test up to 100 samples in 20 minutes or less, while
a laboratory technician requires about 4 days to accomplish the
same task using microscopy [11]. Samples that the clinic deems
TB negative but which the rats indicate are TB positive are then
retested using WHO-endorsed methods, such as concentrated
smear microscopy or GeneXpert. Samples that are confirmed
positive are communicated to the respective DOTS clinic,
effectively providing 24-hour result turnaround and improved
linkage to care [6]. Applying this method since 2007 has enabled
TB-detection rats to identify more than 29,000 patients who
had a missed diagnosis during initial screening [4]. Thus, rat
scent detection technology is of great importance to the
community and public health hospitals because it increases case
detection, enables treatment, and curbs the spread of the disease
[3].

Application of ML and Big Data Analytics in Diagnosing
and Detecting TB
Technology advancement has allowed access to data from
multidimensional sources with high throughput velocity. The
term used to describe this kind of data is “big data,” which is
difficult to analyze for interesting patterns or inefficiencies
without ML technologies [12]. The application of ML in health
care is important to improve human health, and ML and big
data analytic technologies have brought advancements in TB
health care services owing to the increase of health care data
and the availability of analytics to solve health problems [13].
ML is a technology that enables a machine to learn from past
data and predict the outcome. Thus, in health care, ML contains

sophisticated algorithms that help to learn features from a large
volume of health care data and then use the obtained insights
to assist clinical practices [14]. Big data analytics is the use of
advanced analytic techniques on vast amounts of data in
different formats, such as structured, semistructured, and
unstructured data, from different sources. Big data analytics can
help to discover useful information that facilitates
decision-making and health care outcome prediction. Therefore,
ML and big data analytics can assist physicians by providing
up-to-date medical information from clinical practices for proper
patient care. As such, the application of ML and big data
analytics can help to reduce diagnostic and human errors in the
outcomes of clinical practices [15].

ML in health care depends on different techniques, which
include classification, clustering, and association, for its
operation. These techniques help to learn past data and detect
knowledge patterns [16]. Classification techniques are used to
develop models that predict future events from the manipulated
data and offer solutions to real-world health problems such as
diagnosis and treatment of diseases [16]. Classification is the
ML technique that operates by building predictive models that
categorize and assign labels to manipulated and newly
encountered instances [16]. These predictive models help solve
multiclassification problems through prediction and analysis.
Moreover, the models are used as decision-support tools that
help medical professionals interpret diagnosis results [17]. For
example, Abdar et al [18] used the boosted C5.0 and CHAID
classification algorithms to build a decision tree model for the
early diagnosis and prediction of liver disease. In addition, ML
technologies were used in the diagnosis of TB to categorize and
find relationships among the manipulated variables [19]. This
study developed an efficient and reliable framework for
automatic TB bacilli detection based on deep learning and ML
algorithms. The study also suggested that a classification model
can be used to discriminate between positive and negative
samples [19].

The classification algorithms recently used in the diagnosis of
TB include decision tree, random forest, naïve Bayes, SVM,
and kNN [20]. These algorithms are suggested as an alternative
for health care professionals to improve the diagnosis of TB.
The decision tree algorithm C4.5 was used to build a model to
predict the presence of TB bacteria. The results showed that the
decision tree had a prediction accuracy of 99% [21]. The
decision tree generates rules that are simple and easy to
understand and interpret for a decision maker [16].

Moreover, a random forest classification algorithm was used
to discriminate the TB bacilli with a sensitivity and specificity
of above 89.34% and 62.89%, respectively. Furthermore, it is
proposed that the naïve Bayes algorithm can be used for the
diagnosis of TB [22]. Additionally, SVM is known as a useful
model to identify abnormalities in the lungs for the diagnosis
of TB [23]. Following this, algorithm comparison is of great
importance to find a reliable algorithm in the given data [24].
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Methods

ML Algorithms
In this study, the ML algorithms used are decision tree, random
forest, naïve Bayes, SVM, and kNN to build predictive models
that categorize data and assign a label to manipulated and newly
encountered data. The purpose of involving different algorithms
is to compare and improve the prediction accuracy of rats for
TB detection.

Real Data Sets
This paper used 2 data sets provided by APOPO: detection rats
data set and RAT_WEIGHT data set, which were combined to

form the final data set, as shown in Table 1. The detection rats
data set contained 471,133 observations from 2011 to 2019 and
involved 18 variables (17 independent and 1 dependent). The
RAT_WEIGHT data set contained 1438 records collected from
2012 to 2019 and involved 4 independent variables. Moreover,
these data contained 5 female rats with IDs 56, 72, 80, 85, and
96. However, the fifth rat with ID 96 from the RAT_WEIGHT
data set was eliminated in the analysis because it lacked the
necessary detection performance variables in the detection rats
data set. Therefore, 4 female rats were used in this study. The
2 data sets and corresponding variables are displayed in Table
1.

Table 1. Rats data set description.

Variable typeDescriptionData typeVariable nameData set and number

Detection rats data set

IndependentName of the DOTSa centerStringDOTS_NAME1

IndependentNumber of patients from the DOTS centerIntegerDOTS_PATIENTS_NUMBER2

IndependentYear when the patient attended the DOTS centerIntegerENTRY_YEAR3

IndependentIdentification of the sampleIntegerID_SAMPLE4

IndependentIdentification of the bacteria level from the DOTS centerIntegerID_BL_DOTS5

DependentTBb detection rat performance (categorical variable)BooleanHIT6

IndependentIdentification of the bacteria level from the APOPOc

center

IntegerID_BL_APOPO7

IndependentIdentification of the cage during trainingIntegerID_CONFIGURATION8

IndependentIdentification of the bacteria level by fluorescence mi-
croscopy

IntegerID_BL_FM9

IndependentIdentification of the evaluation sessionIntegerID_EVALUATION_SESSION10

IndependentDate when a session was performedDateSESSION_DATE11

IndependentIdentification of the ratIntegerID_RAT12

IndependentName of the ratStringRAT_NAME13

IndependentSex of the ratStringGENDER14

IndependentAge of the ratIntegerAGE15

IndependentDate and time when the detection task startedDateTimeSTART_TIME16

IndependentDate and time when the detection task endedDateTimeEND_TIME17

IndependentDate when the rat was bornDateDOB18

RAT_WEIGHT data set

IndependentIdentification of the ratIntegerID_RAT1

IndependentName of the ratStringRAT_NAME2

IndependentDate when the weight of the rat was measuredDateWEIGHT_DATE3

IndependentWeight of the ratIntegerWEIGHT4

aDOTS: directly-observed treatment, short-course.
bTB: tuberculosis.
cAPOPO: Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling.
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Applied Variables
The data underwent initial preprocessing to obtain the required
variables for developing the predictive models. All data
preparation was implemented by Python owing to its large
number of libraries for scientific computing and the development
of ML predictive models [24]. The sample (either TB negative
or the bacterial concentration of TB positivity provided by the
partner DOTS clinic, ID_BL_DOTS) was compared to
APOPO’s confirmatory diagnosis (where applicable) using
concentrated smear microscopy (ID_BL_APOPO) to create a
variable termed Definitive_Status. This variable reflected the
APOPO result when one was provided; otherwise, it indicated
the DOTS clinic result. The Definitive_Status was then
transformed into the dichotomous variables of TB_Status to
reflect the final status of the sample as either positive or negative
for TB (collapsing across bacterial concentrations for positive
samples). Then, TB_Status was compared to hit to compute the
dependent variable of Rat_Performance, which consists of 4
categories: correct hit, miss, false alarm, and correct reject
(Figure 2).

After the data preparation, 4 variables for the detection
performance of the rats, including TB_Status, age, weight, and

hit, as shown in Table 2, were used to build the predictive model.
Moreover, this study used 366,441 observations for analysis
after removing the null rows from the rats data set to prevent
noises, outliers, and inconsistencies in the data. The sklearn
model selection library through a train-test split class was used
to partition the data (366,441 observations) into 256,508
observations (70%) in the training data and 109,933 observations
(30%) in the test data. It is important to mention that, due to the
binary nature of many variables and the underlying prevalence
of TB infections, the data used in this study lack a normal
distribution, as shown in Multimedia Appendix 1.

Categorical variables were used to build predictive models, and
256,508 observations (70%) were used for training the models.
The TB_Status variable consisted of 10.90% (27,950/256,508)
positive samples and 89.10% (228,558/256,508) negative
samples. The hit variable consisted of 21.33% (54,719/256,508)
true values and 78.67% (201,789/256,508) false values.

Table 3 shows a statistical summary of the distribution of
continuous variable data before and after the random data split.
Despite most of the distributions being the same, the mean of
age and weight variables showed a difference of 0.01. Moreover,
the SD of ID_RAT and weight differed by 0.01.

Table 2. Description of the dependent and independent variables used to build predictive models.

ValueVariable typeData typeDescriptionVariable

True or falseIndependent/cat-
egorical

ObjectFinal diagnosis of the sample as either TBa positive or TB negative. Combines

the diagnostic results of both DOTSb and APOPOc (lab confirmation, when
applicable) wherein APOPO status (results) overrides DOTS.

TB_Status

Age ranges from 0.79 to
7.95 years

IndependentObjectAge of the rat in years at the time when the rat evaluated the patient sample
in question

Age

Average rat body weight
ranges from 843.67 to
1054.83 grams

IndependentObjectAverage rat body weight (in grams) per year because most of DetectionRats-
Data describes the daily detection tasks and misses their corresponding weights
since the weight of the rats from the RAT_WEIGHT data set was measured
every week.

Weight

True or falseDependent/cate-
gorical

ObjectDefined as a continuous sniff (nose insertion into the cage hole) for ≥3 sec-
onds. True means the rat “indicated” that the sample contained TB (held its
nose in the hole for at least 3 seconds). False means the rat rejected the sample
(did not hold its nose for at least 3 seconds).

Hitd

aTB: tuberculosis.
bDOTS: directly-observed treatment, short-course.
cAPOPO: Anti-Persoonsmijnen Ontmijnende Product Ontwikkeling.
dHit refers to whether or not (true or false) the rat provided an indication.
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Table 3. Descriptive statistics of the continuous variables used to build predictive models before and after random data split.

Weight (g)Age (years)Data split status and variable

Before random data split (n=366,441, 100%)

899.403.83Mean

84.371.72SD

866.803.71IQR

843.670.79Minimum

1054.837.95Maximum

After random data split (n=256,508, 70%)

899.413.84Mean

84.361.72SD

866.803.71IQR

843.670.79Minimum

1054.837.95Maximum

Model Building
The predictive model in this study was developed using 5
different ML techniques: decision tree, random forest, naïve
Bayes, SVM, and kNN. This study used Python libraries for
data preprocessing, matrix processing, mathematical functions,
visualization, and classification. These are Pandas, Numpy,
Matplotlib, and Scikit-learn [25]. The repetitive approach was
used to generate a decision tree by dividing the training data.
The data were divided recursively until the same class of
variables, depending on conditions, using roughly 15,000
samples per leaf, were distributed among each division to create
the decision tree. After that, each node in the decision tree used
a split point to test the altered variables and choose how to
divide the data. The split decision was concerned with the
information gain and entropy of a computed variable. The
variable that had the greatest information gain and the least
entropy was therefore divided and put to the test. The choice
regarding the data split and decision tree building was made
based on information gain and entropy [16]. This study used
pruning to maintain control over the parameters being used to
remedy expansion.

During the training procedure, many decision trees were
randomly constructed using the random forest technique. Based
on the provided manipulated variables, the algorithm’s ultimate
decision was based on the selection of the majority of the trees.
There was a connection between the outcome and the number
of trees in the forest. The outcome was therefore more accurate
with an increase in the number of trees. As a result, the
technique handled 500 trees in the ensemble, and it calculated
the error rate using the training set of information. In the random
forest approach, the training data were used to generate random
splits for the root node and variable node. Since there was no
parameter control during training, the connection between trees
remained strong. Additionally, the frequency and values of the
adjusted variables from the provided data were counted to
generate the classification model using the naïve Bayes method.
This method determined the dependent variable’s a priori
probabilities as well as the conditional probabilities for each

independent variable based on the altered data. The naïve Bayes
technique has been specifically utilized to contrast its prediction
performance with the outcomes produced by other ML
techniques. It does not display the weights of each variable
included in the classification.

SVM is one of the most common supervised ML algorithms
owing to its greater predictive power. SVM analyzes data,
recognizes patterns, and produces input-output functions from
a set of labeled training data. It works by classifying a response
variable by drawing a decision boundary line or hyperplane to
separate 2 classes. Then, the maximum margin hyperplanes are
constructed to optimally separate the output classes from each
other in the training data. The goal is to find the optimal
separating hyperplane where the separating margin is
maximized. The linear kernel was used to allow flexibility and
loss functions. The kNN algorithm is a supervised ML algorithm
that works by identifying a set of k-nearest observations to the
test point and calculating mainly the Euclidean distance between
an observation and its kNN in training data. The k in kNN refers
to the number of nearest neighbors the classifier will retrieve
and use to make its prediction. The chosen k in kNN was 1, as
it is suggested to provide the best test prediction.

Performance Measurements
This study used accuracy, specificity, sensitivity, and F1 score
as metrics to evaluate the performance of the generated
predictive models and compare classification performances.
These measurements were supported in the scikit-learn library
through the classification report class.

Accuracy
The classification accuracy was calculated based on the
confusion matrix, which accurately categorized the actual class
labels of the test data and the class labels of the predicted
models. It was also obtained by dividing the number of truly
classified instances by the number of instances in the test phase.
Accuracy considers TP, true negative (TN), false positive (FP),
and false negative (FN). The classification accuracy for the data
set was measured according to the following formula:
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Accuracy = (TP + TN) / (TP + FP + TN + FN) (1)

Sensitivity
Sensitivity is defined as the number of TP cases over the number
of TP cases plus the number of FN cases. Sensitivity identifies
the correct positive predictions relative to the total actual
positive cases. It is sometimes called a recall metric. The
formula of sensitivity is as follows:

Sensitivity = TP / (TP + FN) (2)

Specificity
Specificity is the ratio between TN cases and all negative cases.
In this study, the precision measure identified the correct
positive predictions relative to total positive predictions. For
diagnostic tools, this could be termed positive predictive value
(PPV) or precision. It essentially provides confidence that any
given positive response reflects a truly positive condition [25].
The formula of specificity is as follows:

Specificity = TN / (TN + FP) (3)

F1 Score
The F1 score is the harmonic mean of specificity and sensitivity.
Basically, it is the weighted average of specificity and
sensitivity. The F1 score was calculated from the specificity
and sensitivity of the test data set [25]. The formula of the F1
score is as follows:

F1 score = 2 ([Precision × Sensitivity] / [Precision +
Sensitivity]) (4)

It is important to mention that specificity and sensitivity are
similar to precision and recall, respectively.

Restrictions of the Study
This study ran the predictive models on a computer with a Core
i5-5300U CPU at 2.30 GHz (2301 MHz, 2 cores, 4 logical

processors) and 8 GB of RAM. The sample size, on the other
hand, was small, with only 4 rats and a gender imbalance.
Moreover, the hit variable consisted of fewer true values
(21.26%) than false values (78.74%).

Ethical Considerations
T h e  s t u d y  wa s  a p p r ove d  b y  t h e  S UA
(DPRTC/R/142/vol.01/104) and Medical Research Coordinating
Committee of Tanzania (NIMR/HQ/R.8a/Vol.1X/3905). The
use of African giant pouched rats as a potential tool for TB
diagnosis has received ethics clearance from the Tanzanian
Medical Research Coordinating Committee [26]. The Office of
Laboratory Animal Welfare has approved APOPO’s Animal
Welfare Assurance (OLAW; Assurance Identification Number
A5720-01).

Results

Comparing Classification Performance Measurements
of the Predictive Models
This study used different ML techniques to build the predictive
models following the methodology presented in Figure 3.
Moreover, this study employed several metrics, including
accuracy, sensitivity, specificity, and F1 score, to measure the
classification performance of the predictive models based on
test data. Figure 4 shows the confusion matrices of the SVM
and random forest classifiers, while Table 4 summarizes the
performance of all 5 ML techniques used to build the predictive
models. The accuracy classification performance of the kNN
technique was low at about 81.25%, while the best performing
algorithm was SVM. As it can be seen from Table 4, validation
showed that the SVM classifier based on the 4 variables shown
in Table 2 achieved an accuracy of 83.39%, but it also reported
that SVM had better ability to recognize the status of TB as
either positive or negative in a given sample.

Figure 3. Process flow of machine learning–based prediction models of rat tuberculosis detection performance. The rectangle symbols represent data,
while the histogram entails model evaluation metrics. DT: decision tree; kNN: k-nearest neighbor; NB: naïve Bayes; RF: random forest; SVM: support
vector machine.
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Figure 4. Confusion matrices of the predictive models. (A) Support vector machine classifier; (B) Random forest classifier.
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Table 4. Comparing the classification performance of classifiers of rat tuberculosis detection.

Predictive modelClassification performance measurement

K-nearest neighborSupport vector machineNaïve BayesRandom forestDecision tree

81.2583.3982.5683.3883.32Accuracy, %

64.0566.0063.0065.0065.00Sensitivity, %

72.0578.0077.0079.0079.00Specificity, %

66.0569.0066.0067.0067.00F1 score, %

89,32691,60290,37091,60291,602Correctly classified observations (true positive), n

20,60718,33119,16318,33118,331Incorrectly classified observations (false negative), n

Important Variables Influencing the TB Detection
Performance of the Rats
This study used the random forest variable importance function
to output the predictor variables based on the mean decrease in
Gini (impurity). Random forest showed high performance in
the feature ranking. The mean decrease in the Gini value is the
average (mean) of a variable’s total decrease in the likelihood
of incorrect classification of a new instance of a random variable
from the data set. Multimedia Appendix 2 shows the predicted
variable importance based on the mean decrease in the Gini
value using the random forest algorithm.

From Table 5, higher (0.817152) and lower (0.026657) mean
decreases in the Gini value result in greater and less variable
importance, respectively. In other words, TB_Status and weight
were the most and least significant variables, respectively, for
predicting rat TB detection accuracy. However, for easy
interpretation and visualization of these results, the variable
importance function of the random forest algorithm sorted and
displayed the variables as reported in Multimedia Appendix 2
based on the prediction importance. As such, the variable that
contributed most to the prediction had the highest mean decrease
in Gini values, followed by the variables with less importance.

Table 5. Random forest variable importance based on the mean decrease in the Gini value.

Mean decrease in the Gini valueVariable nameVariable

0.817152TB_Status0

0.156190Age1

0.026657Weight2

Algorithm for the Prediction of Rat TB Detection
Performance
The study also employed a prediction algorithm for TB detection
as illustrated in Textbox 1.

Textbox 1 shows the algorithm that predicts if the rat will hit
the sample or not. First, data were imported and normalized to
acquire the required data format. Then, the statistical summary
of the independent variables used to build predictive models
was described. Considering Figure 3, the train_test_split library
was used to divide the data set into training data (70%) for
developing the models and test data (30%) for validating the
models. The predictive models were trained based on the
decision tree, random forest, naïve Bayes, SVM, and kNN
classifiers, using the train data. Meanwhile, the validation of
the models was performed using the test data. Then, accuracy,
sensitivity, specificity, and F1 score were used to measure the
classification performance of each classifier, as reported in
Table 4. Furthermore, the input variables TB_Status, age, and

weight were entered for prediction. Following the prediction,
models were validated using the test data. Hence, data
visualization was performed using the Matplotlib library for
proper interpretation of the results. On the other hand, if the
constraints were not met, the algorithm could be terminated.

In addition to the above algorithm for the prediction of rat TB
detection performance, Figure 3 indicates the process flow of
ML models and their predictions using Python libraries. The
TB input data set was imported as a .csv file. After preprocessing
the data, the sklearn model selection library was used to partition
the data into training data (70%) and test data (30%) by using
a simple random split method. The training data were used to
build a predictive model using decision tree, random forest,
naïve Bayes, SVM, and kNN classifiers. After building the
predictive model, the inputs, including TB_Status, age, and
weight, were computed to predict if the rat would hit the sample
or not. Thereafter, the predictive models were evaluated for
their prediction performance using accuracy, sensitivity,
specificity, and recall metrics.
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Textbox 1. Algorithm for the prediction of rat tuberculosis detection performance.

I. Import and normalize the dataset (.csv)

II. Calculate IQR, mean, SD, minimum, and maximum

III. Perform splitting of the data set

1. if splitting is successful and not any constraints then

- train the model

2. Perform machine learning (ML) modeling based on decision tree, random forest, naïve Bayes, support vector machine, and k-nearest neighbor

3. Perform validation of the ML modeling

4. Perform ML model prediction

5. Validate the prediction model by calculating accuracy, sensitivity, specificity, and F1 score

6. if accuracy and other parameters are good then

- input: TB_Status, age, weight

7. Perform ML model prediction if the rat would hit the sample or not

8. Update the predicted value of new data for reporting

9. Make data visualization in Python

10. else

11. Perform termination check

12. else

13. End

Discussion

Principal Findings
The aim of this study was to build on the prior work of Jonathan
et al [10] to develop models that predict if a trained TB-detection
rat would hit (indicate the presence of TB within) a patient
sample or not using ML techniques by incorporating variables
related to the diagnostic results of the TB samples. This study
used decision tree, random forest, naïve Bayes, SVM, and kNN
ML techniques to build predictive models. The ML techniques
successfully categorized the data by assigning a label to each
computed data point. The results revealed that for the 5 different
algorithms used, the classification accuracy was the greatest for
SVM, suggesting its superiority to the decision tree, random
forest, naïve Bayes, and kNN classifiers. The SVM classifier
outperformed by yielding a classification accuracy of about
83.39% for predicting if the rat would hit the sample or not.
This level of accuracy surpasses the 78.82% accuracy found
with decision tree and naïve Bayes by Jonathan et al [10],
suggesting that the inclusion of sample information serves as a
valuable variable that influences the performance of
TB-detection rats and improves the accuracy of the prediction
models. Moreover, Jonathan et al [10] employed a small amount
of data compared to the data used in this study. In fact,
TB_Status was found to be the most significant variable in
predicting rat TB detection performance. However, there was
an insignificant accuracy difference between the constructed
models and those created by Jonathan et al [10], which could

be due to the characteristics of the data [16]. Therefore, the
additional variables are likely to influence rat behavior, and the
true status of patient samples can only be determined by
available diagnostics.

Conclusion
This study has shown the usefulness of ML techniques to
identify factors that influence TB detection performance of rats.
The techniques used were decision tree, random forest, naïve
Bayes, SVM, and kNN to develop models that predict if the rat
would hit the sample or not by incorporating valuable variables
related to TB detection performance of rats. The performance
of the predictive models was measured by accuracy, sensitivity,
specificity, and F1 score metrics. The results showed that the
SVM predictive model outperformed in the classification and
prediction of the performance of rats in TB detection by yielding
the highest accuracy of 83.39%. Furthermore, the obtained
results suggest that the inclusion of variables related to the
diagnostic results of TB samples improves the performance of
the predictive models. Therefore, the results might benefit
TB-detection rat trainers and TB decision-makers in improving
the diagnostic accuracy of rats by predicting if a trained
TB-detection rat would hit a patient sample or not. They can
adopt several measures, including ensuring that all hit samples
are confirmed within APOPO’s laboratory (ID_BL_APOPO).
Furthermore, taking into consideration that the age of the rat at
hit and clinic diagnostic results are predictors of detection
performance.
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