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Abstract

Machine learning (ML) approaches could expand the usefulness and application of implementation science methods in clinical
medicine and public health settings. The aim of this viewpoint is to introduce a roadmap for applying ML techniques to address
implementation science questions, such as predicting what will work best, for whom, under what circumstances, and with what
predicted level of support, and what and when adaptation or deimplementation are needed. We describe how ML approaches
could be used and discuss challenges that implementation scientists and methodologists will need to consider when using ML
throughout the stages of implementation.
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Introduction

Implementation science is a research field developing and testing
methods and strategies that can improve the uptake of
evidence-based interventions (EBIs) and practices into routine
use in targeted settings [1]. It has important applications in both
clinical and public health settings, such as health care facilities,
public health departments, schools, and workplaces [2-4]. For
example, the RE-AIM (Reach, Effectiveness, Adoption,
Implementation, and Maintenance) framework, which was
proposed by implementation scientists to guide the planning
and evaluation of programs, has been used for health care– and

community-based programs promoting chronic disease
prevention and management, healthy aging, mental health, and
health behavior change [5]. In addition, implementation science
methods have been applied in clinical settings (eg,
clinic-initiated cancer screening, tobacco cessation, and mental
health programs) to scale up effective interventions to improve
population health [4].

Implementation strategies are the methods, actions, and activities
that aim to enhance the adoption, implementation, and
sustainability of EBIs in clinical and public health practice.
Implementation strategies can target multiple levels (eg,
communities, hospitals, health care clinics, public health
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departments, clinical and public health practitioners, and
individual patients and community members) and may involve
multiple components (eg, information technology tools,
workflow changes, and policies mandating services) and
activities (eg, training and incentives) [6,7]. Numerous factors,
such as target populations and targeted behavior change, varied
uptake of strategies across settings, the actors that deliver the
implementation strategies, and the timing of the EBI
implementation, can influence the implementation processes
and outcomes [6-8]. Further, there is often a need to tailor or
adapt implementation strategies and the associated activities to
the local, dynamic context to increase implementation success.
Given the multifactorial drivers and their complex relationships,
implementation science could benefit from advanced data
analytics frameworks and methods for artificial intelligence and
machine learning (ML).

As a subfield of artificial intelligence, ML [9,10] develops
automated methods and algorithms that learn from data. With
this learning, it can then perform tasks such as prediction and
pattern discovery. To date, ML applications in health care
settings have been focused on supplementing clinical work,
predicting health-related outcomes (eg, disease severity and
prognosis) [11-14], and supporting clinical decisions (eg,
tailoring medications and other treatments) [15-17]. Applications
of ML in public health include population health surveillance
and outbreak mitigation, evaluating the effectiveness of public
health strategies and campaign and disaster and emergency

alleviation [18-22]. Existing literature on the application of ML
in the field of implementation science is sparse [23]. However,
ML has great potential to be applied in areas such as tailoring
strategies and support activities, supporting decision-making
on the selection of actors or settings, and predicting and
understanding the impact of implementation strategies on the
adoption of EBIs across different settings and target populations.
The aim of this viewpoint is to introduce a roadmap for applying
ML techniques to address implementation science questions,
describe a few limited real-world applications of ML related to
implementation science, and discuss challenges that
implementation scientists and methodologists may face along
the way when using ML as a strategy to monitor EBI adoption
or to inform the need for interventions.

A Roadmap for Applying ML in
Implementation Science

ML approaches can be applied across the continuum of EBI
implementation. Here, we use the strategic implementation
framework (SIF) [24] as a roadmap to illustrate the potential
application of ML at different stages of implementation, as
summarized in Table 1. The SIF depicts 3 stages of
implementation (ie, setting the stage; active implementation;
and monitor, support, and sustain) and the distinct types of
strategies needed for practice change in each stage to ensure
that improvements are supported and sustained.

Table 1. Roadmap for implementation scientists and methodologists to use MLa.

Strategic implementation framework stages

Monitor, support, and sustainActive implementationSetting the stage

Implementation goals and
activities

••• Monitor the sustained adoption of
strategy and EBI improvements

Implement strategies and support

activities to improve EBIb
Understand the local context to
select implementation strategies
and prepare for implementation

Implementation challenges ••• The context is not static (new
guidelines, policy, and care deliv-
ery)

The context is not staticLimited data available or used
• •The context is not static End users with differing priorities

•• Need to adapt to setting and target-
ed population

End users with differing priorities

Opportunities for ML appli-
cation

••• Monitor progressML as a strategyPredict who will adopt an EBI
• •Determine the level of support

needed
Inform need for deimplementation

• Inform need for support
• Identify the need for change

Considerations when using
ML across the 3 stages

••• Risk prediction biasN/AcSetting characteristics
• •Time period Recalibration of ML
• •Data completeness Adaptation of ML

•• Deimplementation of MLMultilevel strategy

aML: machine learning.
bEBI: evidence-based intervention.
cN/A: not applicable.

Setting the Stage
Setting the stage refers to preimplementation activities such as
assessing readiness to change, identifying barriers and
facilitators to implementing EBIs, selecting or developing

strategies to support implementation, and identifying and
acquiring resources. Implementation scientists often find that
an effective strategy in one setting may not work well in other
settings and that some may need more or different types of
support (eg, hours of training, intensity of coaching support, or
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remote vs in-person training). As such, one of the biggest
implementation science challenges is to identify what works,
for whom, under what circumstances, and with what level of
support.

Typical approaches for selecting and tailoring implementation
strategies to fit the local context (eg, process mapping,
intervention mapping, and coincidence analysis) address this
challenge at the organization or population levels [25]. Often,
data to inform the selection of an implementation strategy are
limited to surveys, qualitative interviews, and organization-level
data. However, clinical or public health data (eg, electronic
health records [EHRs], administrative data, claims data, patient
or disease registries, immunization registries, and health
surveys), data linkages (eg, EHR data linked across practice
sites, water quality, and air quality), and data related to
implementation processes (eg, responses of patients, community
members, and practitioners to a specific implementation science
strategy from prior studies) are increasingly available.
Implementation scientists could use ML to analyze large-scale,
individual-level data to identify or predict who (individuals or
subpopulations) is most likely (or least likely) to engage or
respond to the intervention [26,27]. Specifically, the application
of ML in the preimplementation stage could assist with the
selection of the settings or actors, refinement of implementation
strategies, and decisions about support activities. ML techniques
could predict which sites, practitioners, or target populations
will most likely respond well to certain implementation
strategies (such as a training session or a health information
technology tool), are most likely to need extra support, or might
respond better to different strategies. These analyses could be
based on prior engagement with strategies that led to increased
adoption of EBIs or known characteristics of community (eg,
census and environmental health), health systems (eg,
geographic location), providers (eg, years of practice), patients
(eg, race and ethnicity), and other targeted users.

There are currently no studies using ML approaches to tailor
implementation strategies or support needs in the
preimplementation stage. A few studies have used unsupervised
statistical learning methods, such as latent class analysis and
latent profile analysis [28], to identify subgroups of health care
providers [27] and patients [26] responding differently to
implementation strategies that promote provider-patient
communication on critical illness or patients’physical activities
for weight reduction. For example, one study identified 3 groups
(or phenotypes) of oncologists based on demographics, practice
patterns, and patient panel information [27]. These phenotypes
showed different responses to an EHR-based intervention (EHR
nudges) aimed at improving advance care planning (ACP)
discussion. Oncologists with the lowest volume of patients and
a higher rate of baseline ACP discussion showed the greatest
improvement compared to those with higher volume or lowest
baseline ACP and intermediate volume or baseline ACP. One
study used a supervised learning model to identify areas where
the implementation of HIV prevention programs should be
prioritized. Using state surveillance data on substance use,
sexually transmitted diseases, and community characteristics
(eg, percent living in poverty), ML modeling identified
high-priority areas, of which 79% did not have implemented

syringe services programs [29]. Similar modeling approaches
could be used to better identify who will adopt what
implementation strategies with what supports and tailor resource
allocation before an implementation program is launched to
improve the adoption and sustainability of EBIs.

Further, ML applications during the setting the stage could also
facilitate monitoring when interventions are needed. For
instance, using continuously collected clinical or public health
data and ML-based phenotyping methods [27], it is possible to
prioritize target populations who need the EBIs most at different
time points or stages of the implementation of an intervention.
Modeling could also trigger notifications to local clinics and
public health departments about changes in quality metrics that
require improvement, the resources needed to make an
improvement (eg, additional staff), or changes in an
environmental context (eg, climate change) [30] that could
impact disease incidences and health care needs.

Active Implementation
During the active implementation stage, strategies and support
activities are implemented to promote the adoption of an EBI
(eg, disease surveillance, prescribing shingles vaccination, and
lung cancer screening). During this stage, ML techniques could
be incorporated as an implementation strategy. ML-based
algorithms relating to the active implementation stage are
currently being used to support making accurate diagnoses,
disease risk estimation and surveillance, public health
campaigns, and clinical decision-making. One example is the
use of an ML model to identify foodborne illness in real time
(FINDER). This model was developed, implemented, and tested
in 2 US cities. FINDER would provide a daily list of restaurants
identified as unsafe (likely to have health code violation). Health
departments would then conduct an inspection in the restaurants
identified by FINDER. The model identified accurately more
unsafe restaurants than the previous system or reported
complaints [31]. Examples in palliative care include a deep
learning model that incorporates patients’ EHR data to predict
mortality (those patients most likely to die within 3-12 months).
The model-generated estimates were used to inform providers’
care recommendations and decisions about referring patients to
palliative care [32,33]. In the context of cancer screening, ML
models based on reinforcement learning or ensemble learning
are being developed to more accurately identify patients with
high risk of cancer [34,35]. These models could be used for
cancer screening to balance the benefits of early detection and
the costs of overscreening.

Further, in clinical care, clinical decision support (CDS) tools
[36,37], including EHR alerts, are common implementation
strategies used to promote guideline-concordant practice. ML
can be used to develop “smarter” CDS tools to reduce alert
fatigue. For example, an ML model was developed to predict
whether a provider would respond to shingles vaccination alerts
based on the provider’s characteristics (eg, demographics and
clinical roles), patient’s demographics, and history of the
provider’s interaction with the alerts [38]. The ML model was
shown to reduce over 45% of shingles vaccination alerts without
reducing weekly shingles vaccination orders [38].
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Monitor, Support, and Sustain
This stage focuses on activities that ensure the sustainability of
an intervention. During the monitor, support, and sustain stage,
ML can inform changes needed to ensure the adoption and
sustainability of practice changes. ML-based methods can
leverage vast amounts of data to inform more flexible and
adaptive implementation strategies. ML can also facilitate the
evaluation and adaptation of strategies and inform where
deimplementation is needed. For instance, ML could be used
to identify when public health campaigns have reached
saturation, need to be refocused, or are missing the target
population. For example, during the COVID-19 pandemic,
studies use ML models to identify people at greatest risk for
COVID-19 death and who should be prioritized for vaccination.
Different studies using different populations showed variations
in who should be prioritized in informing local public health
efforts [39-42]. For example, in clinical practice, implementation
scientists leveraged both EHR audit logs and innovative
ML-based approaches to monitor the impact of implementing
a tobacco control CDS tool in the EHR system [43-45].
According to the Health Information Portability and
Accountability Act (HIPAA) [46] and the 2014 release of the
Meaningful Use regulations [47], all the EHRs in the United
States are required to implement audit logs to unobtrusively
track users’ EHR use. In a recent study, a latent-variable
statistical ML model was developed to infer EHR-use activities
from EHR audit log data [44]. Specifically, the ML model
identified topics from EHR log data, where each topic was
represented by a probability distribution of microlevel EHR
actions such as loading a flow sheet, viewing a problem list,
and using a favorite phrase predefined in EHR. Domain experts
(3 physicians and 1 EHR specialist) reviewed these topics (eg,
the top-ranked microlevel EHR actions belonging to each topic
and example EHR sessions representative for each topic) and
assigned an EHR-use activity (eg, visit documentation with
record review and address CDS alerts) to each topic. This
domain expert–informed model was then applied to EHR logs
for 3703 encounters (before CDS implementation: n=2633 and
after CDS implementation: n=1070) in 4 cancer clinics to
monitor changes in providers’EHR-use between 2019 and 2020
[45]. This study found that clinicians spent more time addressing
CDS (more than 32-35 seconds) during a patient visit after CDS
implementation (vs before CDS implementation), with
compensatory unintended reductions in time spent reviewing
patient vital data (less than 61 seconds) and modifying EHR
(less than 7-24 seconds) [45]. These findings pointed to potential
adaptations of the CDS to improve efficacy and reduce burden
[43]. These data-driven findings can inform qualitative studies
that aim to understand the causes of the unintended
consequences and further inform the decision on refining or
deimplementing certain features of the CDS tool.

In summary, despite very few real-world applications of ML in
implementation science, there are many options and
opportunities to use ML at different stages of implementation;
however, some factors are important to take into consideration.

What Are the Factors to Consider in
Using ML for Implementation Science?

As illustrated earlier, ML applications can potentially benefit
implementation science across each of the SIF stages. However,
many factors can impact the use or validity of these ML-based
applications in real-world settings, including achieving equitable
outcomes across multiple settings or subpopulations [48].

There are various techniques used in ML [49]. Supervised
learning methods can be used to build predictive models (eg,
prediction of patients’ risks in illness or poor prognosis and
responses of community members, patients, or providers to
EBIs and implementation science strategies). Unsupervised
learning methods can be used to mine data to identify patterns
(eg, identify subgroups of population, patients, and health
systems who have different responses to EBIs and
implementation strategies). A common practice to develop and
validate supervised ML models includes two stages: (1) using
a data set to develop and validate (ie, internal validation) the
model and (2) using a separate data set (obtained from other
similar settings or from a withheld sample) to validate (ie,
external validation) the developed model [50,51]. In the first
stage, the model can be trained or validated through
cross-validation or using a random split of the data set (eg,
training or development or validation sets). The model’s
parameters and hyperparameters are tuned or set using the
training and development sets. In the second stage, the model’s
performance is further assessed on the external validation set.
Different from supervised learning, there is no ground truth (eg,
labels for clusters or subgroups identified by unsupervised
learning) to validate results from unsupervised learning in a
real-world setting. Consequently, the evaluation process for
unsupervised learning is less standard than supervised learning,
and the choice of evaluation measures often depends on the
unsupervised learning algorithms that are used [52,53]. In
general, the quality of clustering results can be measured in 2
aspects when no external references (ie, ground truth) are
available: coherence (ie, the similarity of objects falling into
the same cluster) and separation (ie, the separation between
clusters). Manual chart review is also useful or even necessary
for qualitatively validating the clustering results in clinical
settings [54]. Both supervised and unsupervised models
developed on a specific sample or data set may not be readily
applicable to other samples or data sets—the issue with
generalizing ML models to different settings [55,56]. This issue
has important implications on the use of ML in implementation
science and requires paying special attention to model design,
development, and validation.

The first factor to consider is that implementation strategies can
be implemented at multiple levels (eg, state, county, community,
population, health systems, clinicians, and patients), which
would determine at which level the ML models would be based.
Models developed and validated using data from one level (eg,
clinic or community) need further validation and adaptation
before being used for predicting outcomes at another level (eg,
patient) or an intervention implemented at multiple levels [57].
For example, within the setting the stage phase, a model could
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be developed using clinician and clinic characteristics (eg,
specialty, provider type, and clinic geographic location) to
predict which clinicians or clinics will be most likely to adopt
a CDS tool. This model, however, is unlikely to be sufficient
or valid in predicting the adoption of a multilevel intervention
that targets both clinicians and patients (using provider nudges
via EHR and patient nudges via SMS text messages). Similarly,
public health programs (eg, a tobacco control or vaccination
program) often use strategies targeting various levels within a
public health jurisdiction (eg, individual, city, county, and state).
An ML model predicting the adoption or success of such
programs needs to take into account multilevel factors.

Second, the setting (eg, type of clinic and social culture of a
specific community), its geographic location, and the time period
used in validating the ML model are important factors to
consider. These contextual factors are important in
implementation science as they impact which strategy or
combination of strategies are selected to scale up or modify to
ensure the adoption and sustainability of EBI. Models that
predict the adoption or sustainability of an implementation
strategy developed in primary care clinics are unlikely to have
an adequate prediction in specialty clinics in the setting the
stage phase. Similarly, an ML-based strategy to improve an EBI
in a rural community setting will likely need adaptation to be
valid in an urban community setting. Additionally, the time
period in which the model was developed needs to be taken into
account. For instance, ML-based CDS developed prior to the
COVID-19 pandemic may be obsolete or invalid after the
pandemic in view of the widespread adoption of telehealth.

Third, when using ML models as an implementation strategy
for risk prediction, they should be designed to predict the actual
targeted outcome rather than the outcome that is easiest to
obtain. For example, consider a risk prediction model being
used to direct palliative care interventions. It is easier to train
an ML-based tool to predict mortality, as a surrogate for
palliative care needs, because mortality is less susceptible to
measurement error and is available in palliative care medical
records [58,59]. However, training an algorithm on mortality
may not identify the individuals with high symptomatic or
psychosocial needs who would benefit from palliative care the
most. Targeting the risk prediction to the outcome that is most
likely to matter for the EBI being implemented is imperative.

Finally, it is critically important to develop and validate models
with equity in mind. Many of the algorithms developed in
medicine are based on trials with nonrepresentative samples
[60]. A recent publication examining various race-biased
algorithms used for medical risk predictions demonstrated the
potentially harmful consequences of biased algorithms [61].
Within implementation science, as noted earlier, strategies may
not work for all. ML models validated in a specific population
(eg, pediatric patients) within a specific setting (eg, hospital)
could be misused and inequitable if used in a different
population (eg, Latino pediatric patients receiving care in a
community health center). The learning here is that ML-based
implementation strategies need to be tested, validated, and
adapted to fit the context of the targeted population to ensure
health equity.

What Are the Challenges?

Overview
Despite the large amount of clinical data and data from
pragmatic implementation trials, there are many challenges
associated with data access and data quality. Further, the tools
and resources needed to extract and preprocess these data for
developing ML may not be easily accessible. For example,
extracting and harmonizing patient-level data from the EHRs
from multiple health systems to develop a preimplementation
ML model could be particularly difficult and time-consuming
if these health systems have different EHR vendors.
Furthermore, the application of ML in implementation science
may result in unintended consequences, and issues related to
the sustainability and scalability of the model need to be
addressed.

Data: Quality, Availability, and Type
Public health data and information systems vary with regard to
data quality, completeness, collection methods by systems,
sampling bias, and underreporting [62-64]. In addition, the
collection and generation of public health data are often
time-consuming, resulting in delays in data reporting. Similarly,
clinical-related data, such as EHR or health insurance claims
data, are not designed for research and as such may not be
collected and recorded in a systematic standard way. For
example, comprehensiveness, completeness, and availability
of patient demographic information (eg, race or ethnicity), health
insurance data, and clinician data vary greatly by health systems
and EHR vendors [65-71]. Additionally, some information that
can be critical in the accuracy of ML prediction may reside in
unstructured data (eg, a scanned PDF and free text of an
encounter note) and, therefore, would require additional
preprocessing steps, such as natural language processing [72].
Missing clinical-related data are unlikely to be random [70].
Specifically, EHR data come from a combination of clinician
notes, test orders and results, documentation of diagnoses, and
patient-reported information. The accuracy and completeness
of these data are dependent on the source of the information.
For example, the history of a cancer diagnosis can be derived
from clinician diagnosis, clinical exchange systems, and patient
self-reported history. A study linked EHR data with cancer
registry to assess the accuracy of cancer diagnosis in the EHR
[66]. Authors found that approximately 45% of cases recorded
in the registry did not have a cancer history in their EHR. This
information may have been in unstructured data such as in
encounter notes. Data used for training an ML model may
underrepresent certain patient subgroups [71]. For example, the
use of insurance claims data excludes patients without health
insurance, and these patients are often socioeconomically
disadvantaged individuals. Variation in data documentation and
completeness impact not only predictor variables used in the
ML models but also the outcome variables. For example,
predictive models of emergency department admissions using
claims data would miss patients who are uninsured and are more
likely to rely on the emergency department for care [73].
Moreover, ML models designed to develop an intervention
targeting health system, school system, or community-based
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organization change may require data on staffing, supplies, or
organizational capacity, which could be challenging to obtain.

Potential for Unintended Consequences
ML models, whether designed for predicting disease risk or for
supporting clinical care management and decision-making, are
susceptible to bias. Bias can be introduced at multiple points in
the development and application process of ML [61,74,75]. As
noted earlier, data sources and data representativeness (eg, the
population, inclusion or exclusion of diseases, comorbidities,
and health risk factors) can greatly influence the ML model and
consequently the actions based on the ML model. Further,
because ML models can generate data for other ML models,
bias can be amplified and can lead to unintended consequences
[76]. Char et al [77] proposed a framework for examining ethical
considerations of ML models in health care settings, which
poses questions about the values and ethics at multiple steps of
the model development and implementation. This framework
can guide decision-making to minimize bias and can promote
accountability and transparency in model development.

Sustainability and Scalability of the Model
Public health interventions and campaigns are moving targets.
For instance, climate change is leading public health departments
to adapt or develop new initiatives for disaster preparedness
efforts, disease surveillance, and carbon footprint reduction
[78-80]. For instance, there is growing evidence of the mental
health toll of climate-related events [81], yet strategies to
monitor and intervene climate-related mental health burden are
scarce [78]. Analogously, health care systems are ever-changing
[82] as they must adapt to new clinical care guidelines, changes
in reimbursement policies, care delivery modality (ie,
telemedicine), quality improvement efforts, and local, state, or
federal law amendments. For example, in April 2020, the
American Society of Colposcopy and Cervical Pathology
released new guidelines to provide recommendations on cervical
cancer screening frequency and follow-up tests for abnormal
cervical cancer results [83]. These guidelines significantly differ
from the previous 2012 version [84]. Any implementation
strategies designed to facilitate the adoption of the 2012
guidelines became obsolete and needed to be revised. For

another example, EHR-based patient portals are efficient
systems for communication between patients and health care
providers and platforms for health information exchange. These
portals can be a platform for patient-centered implementation
strategies to improve the uptake of evidence-based practice.
Patient portal tools have been used to improve the uptake of
ACP or lung cancer screening [85]. Patient portal adoption
before the COVID-19 pandemic, however, remained relatively
low and varied widely across patient subgroups (eg, by age and
socioeconomic status), diminishing the effectiveness of
strategies implemented within the portal [86,87]. The need for
social distancing and the uptake of telemedicine during the
COVID-19 pandemic led to a rise in patient portal use, which
could improve the reach of such strategies [88]. The uptake in
patient portal during the pandemic was also associated with a
rise in “e-visits,” which were communications between patients
and clinicians between in-person visits [89,90]. This led to
health care systems to bill for these messages following existing
federal rules [90,91], which in turn may limit the use of patient
portals and impact their effectiveness as an implementation
strategy. This example illustrates how the changes in the health
care system can impact a specific implementation strategy.
Consequently, the reach, adoption, and sustainability of the EBI
it aimed to improve are also impacted. These ever-changing
systems pose a significant complication when using ML models
[92,93]. How frequently should an ML model be adapted or
recalibrated to ensure that it has accurate predictions and is
unbiased and ethical? This is a critical factor impacting the use
of ML in implementation science and across the 3 stages of
implementation and remains to be answered by future studies.

Conclusions

ML can assist with predicting what will work best, for whom,
under what circumstances, and with what level of support, or
what and when adaptation and deimplementation are needed.
However, there are many remaining challenges with integrating
ML into various stages of implementation, which require further
research and investigation. Tackling these challenges has the
potential to render ML as an innovative and useful tool in
implementation science in years to come.
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