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Abstract

Artificial intelligence (AI) applied to medicine offers immense promise, in addition to safety and regulatory concerns. Traditional
AI produces a core algorithm result, typically without a measure of statistical confidence or an explanation of its
biological-theoretical basis. Efforts are underway to develop explainable AI (XAI) algorithms that not only produce a result but
also an explanation to support that result. Here we present a framework for classifying XAI algorithms applied to clinical medicine:
An algorithm’s clinical scope is defined by whether the core algorithm output leads to observations (eg, tests, imaging, clinical
evaluation), interventions (eg, procedures, medications), diagnoses, and prognostication. Explanations are classified by whether
they provide empiric statistical information, association with a historical population or populations, or association with an
established disease mechanism or mechanisms. XAI implementations can be classified based on whether algorithm training and
validation took into account the actions of health care providers in response to the insights and explanations provided or whether
training was performed using only the core algorithm output as the end point. Finally, communication modalities used to convey
an XAI explanation can be used to classify algorithms and may affect clinical outcomes. This framework can be used when
designing, evaluating, and comparing XAI algorithms applied to medicine.
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Introduction

Algorithmic classifiers like artificial neural networks were first
implemented many years ago [1]. Recently, unsupervised neural
networks have allowed context-agnostic training and
deployment. Without the need to embed a priori knowledge of
the real-world system being studied, the use of these applications
has expanded rapidly, and there has been much excitement about
artificial intelligence (AI) algorithms in nearly every industry,
including medicine.

Meanwhile, government policy that incentivizes the use of
electronic medical record systems expanded the availability of
digital health care information [2]. This created an environment
where data analysis, predictive analytics, and ultimately AI can
readily influence the interpretation of patient data and potentially
prevent errors in real time during the course of clinical care [3].
Along these lines, radiologists, and to a lesser extent
pathologists, are increasingly using image analysis algorithms
as an assistive technology for image interpretation [4-6]. These
technologies, rather than feeding into misconceptions about
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threats and capabilities of AI, could potentially put radiologists
and pathologists at the forefront of purposeful AI innovation
[7].

Initially, AI may seem like a threat to health care jobs, removing
providers from the decision-making process by introducing
algorithms that function as a “black box” [8]. With this
perceived threat are concerns about patient safety, some
stemming from comparisons to non–health care applications of
AI. Like any system, AI is not infallible. For example, early
versions of self-driving automobile algorithms may have caused
accidents [9].

The practice of clinical medicine remains an “art” where
decisions of licensed providers are relied upon to ensure patient
safety. Unfortunately, in contrast to transparent, rule-based
systems, a trained AI model is not transparent to a clinician
[10]. Therefore, there are currently efforts to find a middle
ground that combines human involvement and AI in a
complementary manner [11]. For example, AI might be used
to generate insights not always or easily identified by a human,
but a human would still determine their significance [12,13].
In this way, AI becomes a tool used by a clinician.

Multiple countries have passed or proposed regulations on the
use of algorithms in clinical medicine. Under the US Food,
Drug, and Cosmetic Act, an algorithm can be classified as a
“nonregulated medical device” if it meets certain criteria;
otherwise, it may represent a regulated medical device. One of
the key criteria is whether the algorithm is “intended for the
purpose of enabling such health care professional to
independently review the basis for such recommendations that
such software presents so that it is not the intent that such health
care professional rely primarily on any of such recommendations
to make a clinical diagnosis or treatment decision regarding an
individual patient” [14]. It remains to be seen how the FDA
enforces this criterion on a case-by-case basis, and regulations
may change over time. Similarly, the UK Department of Health
and Social Care has issued robust guidance for best practices
in digital health care innovation [15]. One of the key elements
of this guidance is transparency about algorithm limitations,
algorithm type, and evidence of effectiveness. Because of these
regulatory frameworks, concerns about medical malpractice
issues, and the general awareness that algorithm predictions are
not always correct, there is a growing recognition that AI

algorithms should allow health care providers to independently
review some form of explanation of their core results [16].

Recently, efforts began to build AI algorithms that allow humans
to evaluate the significance of their results, with the goal of
better integration and communication between the two. Most
notably, the US Defense Advanced Research Projects Agency
(DARPA) has called for further development of “explainable
artificial intelligence” (XAI) [17]. The core algorithmic result
or prediction is provided to the user along with an explanation
that is intended to convey insight into the confidence of the core
prediction, increase a user’s understanding of the real-world
process being studied, or both [18].

With its many benefits, XAI also brings added complexity in
the form of process-specific outputs and integration with a
subject matter expert end user. Not only does this elevate the
importance of partnerships between clinicians and AI
developers, it also raises the somewhat paradoxical possibility
that algorithms with inferior core predictive power may perform
better if the explanations provided result in superior outcomes
overall. Furthermore, the clinical decision points supported by
XAI as well as the manner in which explanations are provided
to the user may differ greatly between algorithms and influence
their efficacy. Here, we propose a framework for classifying
XAI algorithms in clinical medicine in order to simplify this
additional complexity and allow for performance evaluation of
XAI in clinical practice.

Clinical Scope

The ultimate scope of clinical medicine is to prolong and
improve the quality of human life. Within this, there are many
decisions and actions that can be evaluated independently (eg,
ordering a test, prescribing a medication, performing a surgery).
XAI algorithms can be classified based on which step(s) in the
clinical care pathway they support (see Figure 1). A single
algorithm may provide outputs that encompass multiple areas
of clinical scope. Defining clinical scope is critical for XAI,
because it will determine which individuals on clinical care
teams will be best suited to interact with the algorithm and
evaluate the explanations provided. Furthermore, the ultimate
impact of XAI on clinical outcomes will be limited by the
potential impact of the process steps that an algorithm supports.
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Figure 1. Clinical scope for XAI algorithms. XAI algorithms can be classified based on which steps in the clinical decision-making process they
support. A simplified process flow map divides clinical decision-making into information (boxes) and information processing (arrows). Information
processing steps (I-IV) can involve both human cognitive processing and computerized algorithms. Disease process evolution introduces biologic time
dependency (red boxes), leading to a requirement for repeated information processing over time (double arrows). Some recorded information more
directly reflects underlying disease (red boxes), while some is mainly the result of information processing (green boxes). Clinical outcome reflects
underlying biology, the performance of the entire process, and the effectiveness of treatments. XAI fundamentally influences the information processing
steps (I-IV) in partnership with clinicians. XAI performance can be evaluated at each information processing step or studied in the context of overall
outcome. Performance of tests and treatments (black lines) are assumed to be static; however, they can be incorporated as inputs into a decision process.
XAI: explainable artificial intelligence.

Clinical Insight

Explanations provided by XAI algorithms should aim to provide
evidence and ultimately insight to the end user. In the case of
pathology, generation of insight to assist clinicians can assist
with formation of differential diagnoses, quantitative
classification of features, risk prediction, and identification of
features imperceptible to the human observer [19]. Both the
content of the information and its delivery will determine
effectiveness. Evidence can be presented in the form of empiric
assessments of statistical confidence, such as a P value.
Alternatively, an algorithm could provide an assessment of the
degree of association between the current patient’s data and

historical groups of patients or established disease mechanisms
(see Table 1).

Clinical providers evaluate empiric assessments of confidence
differently than associative power, and the existence of a high
degree of uncertainty in any patient-specific medical prediction
necessitates a continued role for the “art of medicine” in the
form of decision-making by end users. This is due to an
incomplete accounting for biological factors that influence
disease processes, incomplete documentation of observable
factors in the electronic medical record, and the importance of
the doctor-patient relationship in clinical care [20]. As a result,
associative explanations may be more powerful in certain
situations, since an association may support a nonquantifiable
opinion held by provider or patient.

Table 1. Classifying explainable artificial intelligence explanations by type. The explanations produced by an explainable artificial intelligence algorithm
can provide addition information to a clinician in 3 general ways.

Benefit to clinicianPrimary task for clinicianXAI explanation outputXAIa explanation type

Assess the validity of the predictionWeigh the degree of confidence pro-
vided with risks, benefits, and training
data used

Statistical confidence based on histor-
ical sample data

Empiric

Consider alternative options pro-
cessed by the algorithm

Assess the validity of associating this
patient with historical groups of pa-
tients

Association between signs and
symptoms of a patient with historical
groups of patients

Population associative

Assess validity of the prediction and
consider alternatives using established
medical paradigms

Assess the validity of the pathologic
mechanism(s) and diagnoses pro-
posed

Association with known pathologic
mechanism(s)

Mechanism associative

aXAI: explainable artificial intelligence.

Training and Validation

The loss of context and end user agnostic efficiency of
traditional AI algorithms remains a great challenge to the initial

design and implementation of XAI. In fact, the meaning of
model validation in medicine differs from the traditional
validation process typically undertaken in technology fields in
that it refers to validation relative to patient outcomes and
evidence-based medicine principles—not just whether outcomes
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are technically correct, match a reference method, or agree with
expectations [21]. Ultimately, only patient outcomes can confirm
whether the model is valid and whether AI investment is or was
a worthy investment. Therefore, XAI takes special meaning in
such evidence-based validation processes, since explainable
analytics will help support outcomes or facilitate corrections
and adjustments. Likely, the development of context-specific
XAI will evolve from traditional AI in phases, each supposing
a core algorithm output in addition to some form of explanation:
phase I will involve traditional AI training and validation; phase
II will involve traditional AI training and XAI validation, taking
into account end-user actions; and phase III will involve XAI
training and validation, both taking into account end-user
actions.

During the final phase of XAI development as described above,
the algorithm will train not to maximize the predictive power
of the core algorithm output but to maximize the outcome of
the combined effects of core output, explanation, and end-user
actions. It is during this phase of development that XAI
implementations may regain some degree of the context-agnostic
advantages of traditional AI, since the behavior of the end-user
context expert can be studied by the algorithm during validation.

Example 1: Anatomic Pathology

Anatomic pathologists interpret microscopic tissue morphology
based on architectural and cytomorphologic criteria shown to
correlate with pathologic diagnoses such as cancer. Criteria may
include features such as hyperchromatic nuclei, high mitotic
rate, and irregular nuclear membrane contours. Unfortunately,
none of these features are 100 percent specific for a particular
diagnosis like cancer, since nonneoplastic conditions may
produce similar cellular features. Additionally, noninvasive
premalignant conditions such as carcinoma in situ can contain
individual cells that appear morphologically identical to cells
within an invasive cancer. Incorporating concepts of XAI into
digital anatomic pathology workflows will aid pathologists not
only in making the correct diagnosis, but also in considering
alternative diagnoses and recognizing potential diagnostic
pitfalls (see Figure 2). Potentially, XAI systems can also
incorporate ancillary information, such as clinical history,
immunohistochemistry staining, and genomic testing, to aid the
pathologist.

Figure 2. Illustrative example of 3 types of XAI output applied to anatomic pathology. XAI core algorithm output is shown as a diagnosis. Several
forms of output explanation are succinctly outlined beneath the image, enabling a physician to make a visual interpretation in conjunction with immediate
access to an explanation under multiple categories. “Empiric” information provides overall accuracy expressed as a single number; “population
associative” provides a more detailed glimpse into the “black box” result; “diagnosis” relates to other cases an algorithm has access to; “mechanism
associative” maps the AI process onto clinically relevant features found in the image (scored based on degree of association, 1 to 3+). XAI: explainable
artificial intelligence.
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Example 2: Diagnostic Management

One of the most difficult tasks for a clinician is to identify which
patients should undergo screening tests and which should not
[22]. This is particularly difficult when the condition screened
for has a high mortality rate if not recognized, but the screening
test is expensive and not without risks. Such a situation exists

in deciding whether to screen for pulmonary embolism using
computed tomography pulmonary angiography [23]. As a result,
algorithms have been developed to aid clinical decision-making,
but a clinician’s assessment of whether pulmonary embolism
is the most likely diagnosis plays a large role in determining a
patient’s score and management. Scenarios like this represent
an opportunity for XAI to contribute toward more accurate
assessments of pretest diagnostic likelihood (see Figure 3).

Figure 3. Diagnostic management. Possible modification to the YEARS algorithm for decisions on screening for PE by computed tomography. Rather
than relying on clinician assessment of whether PE is the most likely pretest diagnosis, simple scoring algorithms can use an explainable artificial
intelligence core algorithm output to assess pretest probability in the context of well-defined historical patient populations. Furthermore, the contribution
of factors contributing to the core probability assessment can be displayed. Users can then assess whether each factor is valid, which may influence
their assessment of the core algorithm output. For example, factors may be considered invalid if the electronic medical record is recognized as being
incomplete or inaccurate. PE: pulmonary embolism.

Conclusions

The 2 recognized advantages of XAI over traditional AI can be
summarized as insight into the statistical significance of a core
algorithm output and mechanistic insight into the process being
studied. It has been suggested that forcing AI to provide
mechanistic understanding could decrease the predictive power
of the algorithm itself. This may be true in a situation where
algorithm inputs include all data relevant to the real-world
process; however, clinical medicine remains an area where
digitized information is incomplete relative to the totality of
factors influencing human disease. Therefore, humans will likely
remain the ultimate “trusted” decision-makers during critical,
high-risk decisions in clinical care for the foreseeable future.
In this framework, even clinical algorithms that are approved
as regulated medical devices will remain ancillary to the human

practice of medicine. XAI offers the potential to improve not
the predictive power of black box algorithms but rather their
usefulness as a tool for clinical providers, offering the
opportunity to classify and categorize data [24], as well as ensure
meaningful feedback that fits clinical workflows [25].
Information should include identification of tasks, the nature
and purpose of the tasks, their outcome, and methods applied
to produce the outcome [26].

Medical leaders have discussed the need for a “learning health
care system” for many years. The development of XAI offers
the potential to build algorithms that learn with clinical care
providers. To realize the potential of XAI, we must understand
how each type of algorithm might fit into the real-world process
of care delivery and the minds of medical decision-makers. At
least initially, this will challenge algorithm developers to
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understand clinical information and clinicians to efficiently integrate algorithms into their workflow.
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